Jose "Pepe" Puglisi, PhD Department of Pharmacology UC Davis

TEACHING ELECTROPHYSIOLOGY WITH THE AID OF MATHEMATICAL MODELS

Road Map

□ Why do we need mathematical models?

LabAXON (Hodgkin and Huxley)

LabHEART (Ventricular Myocyte)

MarkoLAB (Stochastic Simulation)

Why do we need mathematical models?

□ There are three stages in Science

□ 1) Description

□ 2) Quantification

□ 3) Prediction

Ionic Channels Basic Equation

Voltage dependent inactivation

Equivalent electrical circuit

LabAXON

<u>Demo</u>

LabAXON

Concepts

Cronaxia

Effects of ionic composition

 \blacksquare The need of delay between I_{K} and I_{Na}

Temporal sumation

LabHEART

Cardiac Action Potential

Ca transient

□ Force generation.

LabHEART

LabHEART

Testing the model

 \square β -adrenergic Stimulation:

Does it increase the cross-bridge cycling?

Protein Kinase A does not alter unloaded velocity of sarcomere shortening In skinned rat cardiac trabeculae

Janssen & De Tombe, 1977. Am. J. Physiol.

Phosphorilation of troponin I by PKA increases relaxation rate and Cross-bridge cycling kinetics in mouse ventricular muscle.

Kentish et al. 2001. *Circulation Research*

Effects of Isoproterenol

L-type Ca Channel 1

 \Box I_{Ks} channel \uparrow

□ SR Ca pump ↑

Myofilament Ca sensitivity ↓

Effects of Isoproterenol

Force with/out altering XB cycling

<u>Demo</u>

LabHEART - Discussion

- Our simulations agree with the hypothesis that the cross bridge cycling is increased by isoproterenol
 "..the amount of calcium entering overcomes the decrease in myofilament Ca-sensitivity"
- Force-Frequency Relationship have to be revisited.
 (Frequency is NOT an independent variable)

MarkoLAB

The Hodgkin & Huxley representation has slowly been replaced by state diagrams

These diagrams are not restricted to the idea of independent gates (activation and inactivation)

Those states can be closely related to the underlying channel structure and conformational changes

MarkoLAB

 $I_{N\alpha} = G_{N\alpha} * m^3 * h * j * (V - V_{N\alpha})$ $\begin{array}{c} \mathsf{IC}_3 \xrightarrow{a_1} \mathsf{IC}_2 \xrightarrow{a_2} \mathsf{IF} \xrightarrow{a_6} \mathsf{IM}_1 \xrightarrow{a_7} \mathsf{IM}_2 \\ \downarrow b_1 \xrightarrow{b_1} b_2 \xrightarrow{b_2} b_2 \xrightarrow{b_6} \mathfrak{IA}_3 \xrightarrow{b_6} \mathfrak{A}_4 \end{array}$ m, h, j = f(V, t) $\begin{array}{cccc} \mathbf{C}_{3} & \xrightarrow{\mathbf{a}_{1}} & \mathbf{C}_{2} & \xrightarrow{\mathbf{a}_{2}} & \mathbf{C}_{1} & \xrightarrow{\mathbf{a}_{3}} & \mathbf{O} \\ & & & & & \\ \mathbf{b}_{8} & & & \mathbf{b}_{1} & \mathbf{b}_{8} & & & \mathbf{b}_{8} & \mathbf{b}_{8}$ $\frac{dm}{dt} = \alpha_m * (1-m) - \beta_m * m$ $LC_{3} \xrightarrow[h]{} LC_{2} \xrightarrow[h]{} LC_{1} \xrightarrow[h]{} LC_{1} \xrightarrow[h]{} LO$ $\alpha_m = 0.1 \ \frac{25-V}{\exp\left(\frac{25-V}{10}\right)-1}$ Clancy Model

MarkoLAB

<u>Demo</u>

Conclusions

Conclusions

Mathematical models are tools to study Biology

But also tools to teach Biology

They are freely available at <u>www.labheart.org</u>