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Polymers

• Long-chain molecules of high molecular 

weight

[Introduction to Physical 

Polymer Science,

L. Sperling (2006)]

polyethylene



Motivation of research

Polymer science

Polymer chemistry 

(synthesis) Polymer physics

Polymer rheology



Introduction: polymeric gels



Polymeric gels
Reversible junctions between endgroups 

(telechelic polymers)

TemperatureSol Gel

Concentration



• Examples

– PEO (polyethylene glycol) chains terminated by 

hydrophobic moieties

– Poly-(N-isopropylacrylamide) (PNIPAM)

• Importance:

– laxatives, skin creams, tooth paste, paintball fill, 

preservative for objects salvaged from underwater, eye 

drops, print heads, spandex, foam cushions,…

– cytoskeleton

Polymeric gels



Visco-elastic properties

Shear rate
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[J.Sprakel et al., 

Soft Matter (2009)]
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Hybrid MD/MC simulation of a 

polymeric gel



Molecular dynamics simulation

ITERATE

• Give initial positions, choose short time Dt 

• Get forces                  and acceleration a=F/m

• Move atoms

• Move time t = t + Dt 
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Bead-spring model

•Temperature control through coupling with heat bath

[K. Kremer and G. S. Krest.

J. Chem. Phys 1990]
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Attraction beads in chain

Repulsion all beads



Associating polymer 
• Junctions between end groups : FENE + Association energy

• Dynamics …

[A. Baljon et al., J. Chem.

Phys., 044907 2007]
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Dynamics of associating polymer (I)
•Monte Carlo: attempt to form junction
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Dynamics of associating polymer (II)
•Monte Carlo: attempt to break junction
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Simulation details
• 1000 polymeric chains, 8 beads/chain

• Units: s (length), e (energy&temperature), 
m (mass), ts(m/e1/2 (time);

• Box size: (23.5 x 20.5 x 27.4) s3 with 
periodic boundary conditions



Simulated polymeric gel

T=1.0

only 

endgroups

shown



Shearing the system

Some chains grafted to wall; 

move wall with constant shear rate 

fixed wall

moving wall



Shear banding in polymeric gel



Shear-Banding in Associating 

Polymers

Plateau in stress-shear curve two shear bands
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• PEO in Taylor-Couette 

system

[J.Sprakel et al., 

Phys Rev. E 79, 056306 (2009)]







Shear-banding in viscoelastic fluids

• Interface instabilities in worm-like micelles

[Lerouge et al.,PRL 96,088301 (2006).]
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Stress under constant shear
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stress yield peak

plateau
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All results T=0.35 e (< micelle transition T=0.5 e)



Before yield peak:

homogeneous

After yield peak:

2 shear bands

Velocity profiles
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Velocity profile over time

• Fluctuations of interface

fixed 

wall

moving 

wall
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Chain Orientation
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Chain orientation
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• Effects more outspoken in high shear band



Aggregate sizes
• Sheared: more smaller and larger 

aggregates

• High shear band: largest 

aggregates as likely

size=4



• MD/MC simulation reproduces experiments

– Plateau in shear-stress curve

– Shear banding observed 

– Temporal fluctuations in velocity profile

• Microscopic differences between sheared/ 

unsheared system

– Chain orientation

– Aggregate size distribution

• Small differences between shear bands

• Current work: local stresses, positional order, 

secondary flow, network structure

Conclusions



Equation of Motion
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K. Kremer and G. S. Grest. Dynamics of entangled linear polymer melts: A

molecular-dynamics simulation. Journal of Chemical Physics, 92:5057, 1990.
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•Interaction energy

•Friction constant;

•Heat bath coupling – all complicated interactions

•Gaussian white noise

•<Wi
2>=6 kB T      (fluctuation dissipation theorem)



2) From      calculate forces and 

acceleration                 at t+t 

Predictor-corrector algorithm

Dt=0.005 t

1)Predictor: Taylor: estimate at t+t

3) Estimate size of error in prediction step:

4) Corrector step:



TemperatureSol Gel

Polymeric gels
Associating: reversible junctions between 

endgroups

Concentration



Simulation details
• 1000 polymeric chains, 8 beads/chain

• Units: s (length), e (energy&temperature), 
m (mass), ts(m/e1/2 (time);

• Box size: (23.5 x 20.5 x 27.4) s3 with 
periodic boundary conditions

• Concentration = 0.6/s3 (in overlap regime)

• Radius of gyration: 

• Bond life time  > 1 / shear rate
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