

Rheological study of a simulated polymeric gel: shear banding

<u>J. Billen</u>, J. Stegen⁺, M. Wilson, A. Rabinovitch[°], A.R.C. Baljon

* Eindhoven University of Technology (The Netherlands)
° Ben Gurion University of the Negev (Be'er Sheva, Israel)

Funded by:

Polymers

 Long-chain molecules of high molecular weight

L. Sperling (2006)]

polyethylene

Motivation of research

Introduction: polymeric gels

Polymeric gels

Reversible junctions between endgroups (telechelic polymers)

Concentration

Polymeric gels

• Examples

 PEO (polyethylene glycol) chains terminated by hydrophobic moieties

Poly-(N-isopropylacrylamide) (PNIPAM)

- Importance:
 - laxatives, skin creams, tooth paste, paintball fill, preservative for objects salvaged from underwater, eye drops, print heads, spandex, foam cushions,...
 - cytoskeleton

Visco-elastic properties

Hybrid MD/MC simulation of a polymeric gel

Molecular dynamics simulation

ITERATE

- Give initial positions, choose short time Δt

• Get forces $F = -\frac{dU}{d\vec{r}}$ and acceleration a=F/m

- Move atoms
- Move time $t = t + \Delta t$

Associating polymer

[A. Baljon et al., J. Chem. Phys., 044907 2007]

- Junctions between end groups : FENE + Association energy
- Dynamics ...

Dynamics of associating polymer (I)

Monte Carlo: attempt to form junction

 $\left| P \sim \exp(\frac{-\Delta U}{k_b T}) \right|$

$$\Delta U = U_{possiblentev} - U_{old}$$

= $U_{assoc} + U_{FENE}$

Dynamics of associating polymer (II)

Monte Carlo: attempt to break junction

Simulation details

- 1000 polymeric chains, 8 beads/chain
- Units: σ (length), ϵ (energy&temperature), m (mass), $\tau = \sigma(m/\epsilon)^{1/2}$ (time);
- Box size: (23.5 x 20.5 x 27.4) σ^3 with periodic boundary conditions

Simulated polymeric gel

T=1.0 only endgroups shown

Shearing the system

Some chains grafted to wall;

move wall with constant shear rate

Shear banding in polymeric gel

Shear-Banding in Associating Polymers

 PEO in Taylor-Couette system

γ

two shear bands

Shear-banding in viscoelastic fluids

Interface instabilities in worm-like micelles

[Lerouge et al., PRL 96,088301 (2006).]

All results T=0.35 ϵ (< micelle transition T=0.5 ϵ)

Velocity profile over time

Fluctuations of interface

0.01

x 10

25

Chain orientation

• Effects more outspoken in high shear band

Aggregate sizes

- Sheared: more smaller and larger aggregates
 size=4
- High shear band: largest aggregates as likely

Conclusions

- MD/MC simulation reproduces experiments
 - Plateau in shear-stress curve
 - Shear banding observed
 - Temporal fluctuations in velocity profile
- Microscopic differences between sheared/ unsheared system
 - Chain orientation
 - Aggregate size distribution
- Small differences between shear bands
- Current work: local stresses, positional order, secondary flow, network structure

Equation of Motion

K. Kremer and G. S. Grest. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. *Journal of Chemical Physics*, 92:5057, 1990.

$$\ddot{r}_i = \nabla \sum_{j \neq i} U_{ij} - \Gamma r_i + W_i(t)$$

$$U_{ij} = U_{ij}^{LJ} + U_{ij}^{FENE}$$
 •Interaction energy

 Γ •Friction constant;

•Heat bath coupling – all complicated interactions

W •Gaussian white noise

•< W_i^2 >=6 k_B T Γ (fluctuation dissipation theorem)

Predictor-corrector algorithm

1)Predictor: Taylor: estimate at t+ δt

$$\vec{r}^{p}(t+\delta t) = \vec{r}(t) + \delta t \vec{v}(t) + \frac{1}{2} \delta t^{2} \vec{a}(t) + \frac{1}{6} \delta t^{3} \vec{b}(t) + \dots$$
$$\vec{v}^{p}(t+\delta t) = \vec{v}(t) + \delta t \vec{a}(t) + \frac{1}{2} \delta t^{2} \vec{b}(t) + \dots$$
$$\vec{a}^{p}(t+\delta t) = \vec{a}(t) + \delta t \vec{b}(t) + \dots$$
$$\vec{b}^{p}(t+\delta t) = \vec{b}(t) + \dots$$

2) From \vec{r}^{p} calculate forces and acceleration $\vec{a}^{c}(t + \delta t)$ at t+ δt

3) Estimate size of error in prediction step:

 $\Delta \vec{a}(t+\delta t) = \vec{a}^{c}(t+\delta t) - \vec{a}^{p}(t+\delta t)$

4) Corrector step:

$$\vec{r}^{c}(t+\delta t) = \vec{r}^{p}(t+\delta t) + c_{0}\Delta \vec{a}(t+\delta t)$$
$$\vec{v}^{c}(t+\delta t) = \vec{v}^{p}(t+\delta t) + c_{1}\Delta \vec{a}(t+\delta t)$$
$$\vec{a}^{c}(t+\delta t) = \vec{a}^{p}(t+\delta t) + c_{2}\Delta \vec{a}(t+\delta t)$$
$$\vec{b}^{c}(t+\delta t) = \vec{b}^{p}(t+\delta t) + c_{3}\Delta \vec{a}(t+\delta t)$$

Polymeric gels

Associating: reversible junctions between endgroups

Temperature

Simulation details

- 1000 polymeric chains, 8 beads/chain
- Units: σ (length), ϵ (energy&temperature), m (mass), $\tau = \sigma(m/\epsilon)^{1/2}$ (time);
- Box size: (23.5 x 20.5 x 27.4) σ³ with periodic boundary conditions
- Concentration = $0.6/\sigma^3$ (in overlap regime)
- Radius of gyration:

$$R_g^2 = \frac{1}{N} \sum_{k=1}^{N} (r_k - r_{mean})^2 = 2.69\sigma^2$$

• Bond life time > 1 / shear rate