SDSU Feb 19,2010

Parametric Resonance in Coupled MEMS Gyroscopes

Feb 19, 2010

Colloquium at Computational Science Research Center, San Diego State University

> Suketu NAIK¹ Dr. Takashi HIKIHARA¹ Dr. Nobuo SATOH¹ ¹ Kyoto University

Collaborators Dr. Visarath IN² Dr. Antonio PALACIOS³, Huy VU³ ² SSC Pacific, San Diego ³ Nonlinear Dynamics Group, Department of Math, SDSU

Acknowledgement

Dr. Sam Cassegne ⁴

⁴ MEMS Research Group, Department of Mechanical Engineering, SDSU Global Center of Excellence (GCOE), Kyoto University

Parametric Resonance in Coupled MEMS Gyroscopes

- Introduction to MEMS and Gyroscope
- Model
- Simulation Results for a Single Gyro
- Simulation Results for the Coupled system (Huy Vu)
- Design

SDSU Feb 19,2010

MEMS: Micro Electro Mechanical Systems

Microoptics: Micromirrors (Television)

RF MEMS: Radio Frequency Switch

Introduction to MEMS

MEMS: Micro Electro Mechanical Systems

• Microfluidics: Lab-on-a-chip, BioMEMS

Lens for Glaucoma research (Sensimed AG)

 Micromechanics: Accelerometer (Analog Devices)

Geers (Sandia)

Gyroscope (Analog Devices)

Introduction to MEMS Gyroscope

SDSU Feb 19,2010

MEMS gyroscopes measure angular velocity or the rate of rotation

SDSU Feb 19,2010

Functional summary of a MEMS Gyroscope by capacitive sensing

- 1) The proof mass is driven by a periodic sinusoidal drive signal,
- 2) On a rotating platform, Coriolis effect causes motion in the sense axis,
- 3) The capacitance between the proof mass and sense plate(s) changes,
- 4) Sense electronics calculate the Coriolis acceleration from the change in capacitance between the proof mass and the sense plate,
- 5) Sense electronics calculate a rate of rotation of the MEMS gyroscope from the Coriolis acceleration and the drive velocity
- Digital output: Sense Electronics generate a pulse stream whose frequency is proportional to the acceleration

Analog Output: Sense Electronics generate a voltage output proportional to the acceleration

Characterization: http://www.youtube.com/watch?v=wuzudYgkcJ8

7/48 **MEMS Gyroscope: Performance Parameters**

Drive and sense electronics have an impact on the performance

Parametric Resonance in Coupled MEMS Gyroscopes

- Introduction to MEMS and Gyroscope
- Model
- Simulation Results for a Single Gyro
- Simulation Results for the Coupled system (Huy Vu)
- Design

Model

SDSU Feb 19,2010

m = mass

- x = displacement of the mass in x-dir
- y = displacement of the mass in y-dir
- b_x , b_y = damping constant in x-dir & y-dir respectively
- k_1 = linear spring constant
- k₃ = nonlinear spring constant

 Ω_z = angular rate

 $F_{e(t)}$ = drive signal = $A_d \cos(\omega_d t)$

Electrostatic Force (inter-digitated comb-drive)

Note: The excitation force does not depend on x

Forces acting on the Comb-drive

SDSU Feb 19,2010

Sources of Nonlinearity

SDSU Feb 19,2010

(a) Tensile stress σ = F/A

ratio)

usual units MPa

(b) Shear stress τ = F_ε/A

usual units MPa

4) poison's ratio (transverse stress and axial strain

5) residual stress due to deposition method (causes curling or buckling or a fracture)

 Material Nonlinearity: several ways of measuring the stiffness of materials **Break or Rupture Point** 1) young's modulus (tensile stress and tensile strain ratio) 2) shear modulus (shear stress and shear strain) Stress (or Applied 3) bulk modulus (material resistance to uniform compression) Slope of Offset Line is equal to Young's Modulus or Modulus of Elasticity Force) Specified Offset = 0-m Area A Area A 0 m Strain (or Change in Length) -D

- 6) Anisotropic material : material properties are <u>not</u> independent of direction, e.g. single crystal silicon (sensitive to device orientation with respect to crystallographic orientations)
- Geometric Nonliearity (next slide): large deformations can induce nonlinear oscillations
- Contact based Nonlinearity: springs come in contact with other parts

(c) Pressure p

usual units MPa

Geometric Nonlinearity

SDSU Feb 19,2010

Spring modes and restoring force

Parametric Resonance in Coupled MEMS Gyroscopes

- Introduction to MEMS and Gyroscope
- Model
- Simulation Results for a Single Gyro
- Simulation Results for the Coupled system (Huy Vu)
- Design

Simulation Results for a Single Gyro

SDSU Feb 19,2010

Response of the System in the Drive Mode: k_3 sweep

$$m\ddot{x}+b_x\dot{x}+k_1x+k_3x^3=F_e(t)$$
; where $F_e(t)=A_d\cos(\omega_d t)$

$$A_{d} = 0.001, b_{x} = 5.1472e-7, k_{1} = 2.6494, m = 1e-9$$
^[4]

Single Gyro:Drive Mode Amplitude Response

Simulation Results for a Single Gyro

SDSU Feb 19,2010

Response of the System in the Drive Mode: A_d sweep

$$m\ddot{x} + b_{x}\dot{x} + k_{1}x + k_{3}x^{3} = F_{e}(t); where F_{e}(t) = A_{d}\cos(\omega_{d}t)$$

Simulation Results for a Single Gyro

SDSU Feb 19,2010

Response of the System in the Drive Mode and Sense Mode

$$m\ddot{x} + b_{x}\dot{x} + k_{1}x + k_{3}x^{3} = F_{e}(t) + 2m\Omega_{z}\dot{y}; where F_{e}(t) = A_{d}\cos(\omega_{d}t)$$

$$m\ddot{y} + b_{y}\dot{y} + k_{1}y + k_{3}y^{3} = -2m\Omega_{z}\dot{x}$$

 $A_d = 0.001, b_x = 5.1472e-7, k_1 = 2.6494, k_3 = 600, m = 1e-9, \Omega_z = 100 \text{ rad/s}$ ^[4]

Simulation Results for a Single Gyro

SDSU Feb 19,2010

Response of the System in the Drive Mode and Sense Mode

$$m \ddot{x} + b_{x} \dot{x} + k_{1} x + k_{3} x^{3} = F_{e}(t) + 2 m \Omega_{z} \dot{y}; where F_{e}(t) = A_{d} \cos(\omega_{d} t)$$

$$m \ddot{y} + b_{y} \dot{y} + k_{1y} y + k_{3y} y^{3} = -2 m \Omega_{z} \dot{x}$$

 $A_d = 0.001, b_x = 5.1472e-7, k_z = 2.6494, k_z = 600, m = 1e-9, \Omega_z = 100 \text{ rad/s}$ [4] $k_{1v} = 5, k_{3v} = 600$

Simulation Results for a Single Gyro

SDSU Feb 19,2010

Response of the System in the Drive Mode and Sense Mode

$$m \ddot{x} + b_{x} \dot{x} + k_{1} x + k_{3} x^{3} = F_{e}(t) + 2 m \Omega_{z} \dot{y}; where F_{e}(t) = A_{d} \cos(\omega_{d} t)$$

$$m \ddot{y} + b_{y} \dot{y} + k_{1y} y + k_{3y} y^{3} = -2 m \Omega_{z} \dot{x}$$

 $A_d = 0.001, b_x = 5.1472e-7, k_z = 2.6494, k_z = 600, m = 1e-9, \Omega_z = 100 \text{ rad/s}$ [4] $k_{1y} = 2.82, k_{3y} = 50$

Parametric Resonance in Coupled MEMS Gyroscopes

- Introduction to MEMS and Gyroscope
- Model
- Simulation Results for a Single Gyro
- Simulation Results for the Coupled system (Huy Vu)
- Design

Coupled System

SDSU Feb 19,2010

Assumptions: mass, spring constants, damping coefficients do not vary, diffusive coupling function: $x_{j+1} - x_j$

 λ = coupling parameter (gain or bias current of an amplifier)

 x_j , y_j = displacement of jth element in the n-coupled system (here n =3)

 $F_{e}(t) = drive signal = A_{d} \cos(\omega_{d} t)$

23/48 Simulation Results for the Coupled System SDSU Feb 19,2010 (Huy Vu)

Using perturbation method on dimension-less form...

24/48 Simulation Results for the Coupled System (Huy Vu)

Two parameter Bifurcation Diagram Around the critical value of λc

25/48 Simulation Results for the Coupled System (Huy Vu)

Phase drift is reduced for an individual gyro in a coupled system

- random variation in mass is 10%
- wideband Gaussian noise is added to the equations
- difference between uncorrupted and corrupted signal (y-dir) for many gyros is taken

26/48 Simulation Results for the Coupled System (Huy Vu)

Minimum phase drift in coupled system

- N = total number of gyroscopes in a ring
 - -large number of sets of gyros
 - -values with 50% variation from the mean value of individual phase
 - drift is averaged across a large time period
 - -Ratio of phase drift in coupled and uncoupled is computed
 - -These ratios in a coupled system are averaged

Parametric Resonance in Coupled MEMS Gyroscopes

- Introduction to MEMS and Gyroscope
- Model
- Simulation Results for a Single Gyro
- Simulation Results for the Coupled system (Huy Vu)
- Design

Design

SDSU Feb 19,2010

Experimental Results

Coupled Gyro Test Structure Top Element, x-dir

SDSU Feb 19,2010

|Vac| = 1 V, Vdc= 6 V

*f*ac sweep

*k*₁= 22.18 N/m *b* = 8.5703 x 10⁻⁶ Ns/m

Frequency [kHz]

Frequency [kHz]

Issues

SDSU Feb 19,2010

- How to induce large vibrations in drive mode
- How to enhance read-out in sense mode
- Controlling stiffness k_1 and k_3
- Anisoelasticity and quadrature error
 - x and y mode cross-coupling due to fabrication variation and imperfection
- Damping
 - viscous anisodamping (surfboard effect)
 - anchor loss
 - parasitic effects (through substrate, die-attach, package)
 - electronics
- Coupling
- How to decrease out of plane movement i.e. high aspect ratio (T_{th}/W)

Tuning Nonlinearity

31/48

SDSU Feb 19,2010

- Tuning k₁ (linear stiffness) can affect k₃ (nonlinear stiffness) and visea-versa
- Tune nonlinearity by parametric excitation or parametric coupling

Fig. 01 Comb-fingers in stable or attractive state

Fig. 02 Comb-fingers in unstable or repulsive state

Design

SDSU Feb 19,2010

SDSU Feb 19,2010

Design

SDSU Feb 19,2010

Misaligned Fingers (negative displacement)

Vdc = 40 V

Design

SDSU Feb 19,2010

Aligned Fingers (positive displacement)

Vdc = 40 V

Characterization

Characterization x-dir

SDSU Feb 19,2010

New Design

SDSU Feb 19,2010

Differential

New Design

SDSU Feb 19,2010

First Eigenmode (x-dir): ~ 38204 Hz

New Design

Second Eigenmode (y-dir): ~ 38220 Hz

New Design

SDSU Feb 19,2010

Third Eigenmode (torsional): ~ 95774 Hz

New Design

SDSU Feb 19,2010

Frequency Response with Force amplitude = 56.7 uN (x-dir)

New Design

SDSU Feb 19,2010

Frequency Response with Force amplitude = 56.7 uN (x-dir)

Design iteration: frequency response

SDSU Feb 19,2010

New Design

SDSU Feb 19,2010

Straight Beams

Combination Beams

New Design

SDSU Feb 19,2010

Parameter estimation by curve-fitting simulated data with the model Applied Force vs. Displacement [x-dir]

Coupled System: Parametric Excitation

SDSU Feb 19,2010

47/48

Bi-directionally coupled ring of gyros

$$\left\{ \begin{array}{l} m \ddot{x}_{j} + b \dot{x}_{j} + k_{1} x_{j} + k_{3} x_{j}^{3} = F_{ke}(x, t) + \lambda (x_{j+1} - 2x_{j} + x_{j-1}) + 2 m \Omega_{z} \dot{y}_{j}; \\ m \ddot{y}_{j} + b \dot{y}_{j} + k_{1} y_{j} + k_{3} y_{j}^{3} = -2 m \Omega_{z} \dot{x}_{j}; j = 1, 2, 3 \end{array} \right\}$$
(1)

 $F_{ke}(x) = (r_1 x + r_3 x^3) V_a^2$ where, $V_a = DC + A\cos(\omega_d t)$, r₁, r₃ = electrostatic coefficients

 $\left. \begin{array}{c} m \, \ddot{x}_{j} + b \, \dot{x}_{j} + (k_{1} - r_{1} V_{a}^{2}) \, x_{j} + (k_{3} - r_{3} V_{a}^{2}) \, x_{j}^{3} = \lambda \, (x_{j+1} - 2 x_{j} + x_{j-1}) + 2 \, m \, \Omega_{z} \, \dot{y}_{j}; \\ m \, \ddot{y}_{j} + b \, \dot{y}_{j} + k_{1} \, y_{j} + k_{3} \, y_{j}^{3} = -2 \, m \, \Omega_{z} \, \dot{x}_{j}; \, j = 1, 2, 3 \end{array} \right\}$ (2)

Thank You

References

- [1] V. Apostolyuk, 'Theory and Design of Micromechanical Vibratory Gyroscopes', MEMS Handbook Vol.1:Design Methods in MEMS/NEMS 173, Springer, New York, 2005
- [2] P. Prendergast, B. Kropf, 'How to use programmable analog to measure MEMS gyroscopes',

http://www.embedded.com/columns/technicalinsights/197002302?_requestid=334309

- [3] C. Acar, Robust Micromachined Vibratory Gyroscopes, PhD Dissertation (UC Irvine) 37-39, (2004)
- [4] H. Vu, V. In, A Palacios, 'Two-time scale Analysis of a Ring of Coupled Vibratory Gyroscopes', Submitted to APS/123-QED, (2009)

Contact Info

Suketu NAIK, suketunaik@gmail.com