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p-conjugated free radicals



Quantum electronic structure 

programs let us predict:

• Relative energies for isomers,            
reactants vs. products

• Geometries of reactants, products, 
intermediates, transition states

by solving molecular Schrödinger equation 
within Born-Oppenheimer approximation

• Harmonic vibrational frequencies

to estimate IR spectra, also zero-point and 
thermal corrections to DrxnG.



Basis sets: how we construct the 

electronic wavefunctions 

• Many-electron wavefunctions in molecules 

constructed from 2-electron or 1-electron molecular 

orbitals (MOs)

• MOs constructed as sums over atomic orbitals

• 1-electron atomic orbitals are Rn,l(r) Ylm(q,f) where 

Rn,l(r) decays as e-r

• But 4-center integrals much easier with Gaussians 

than e-r because can rewrite as two 2-center integrals.



Gaussian basis sets



Gaussian basis sets



Gaussian basis sets



basis set polarization functions

s 100% 95%    90% 80%

p 0 5% 10% 20%



Methods: how we approximate the 

Schrödinger equation

Molecular 

mechanics (MM)

Long-range forces; no 

esoteric bonding allowed

Hartree-Fock (HF) Basic bonding; no 

dispersion or excited states

Density Functional 

Theory (DFT)

Often excellent; still no 

dispersion or excited states

Correlated methods 

(MP2,CI,QCISD,CC)

Excellent but expensive



Vibrations in Free Radicals

Many conjugated free 

radicals have isomers 

related through 

relocalization, leading 

to anharmonic and 

highly coupled

vibrational modes.



We want vibrational energies and 

wavefunctions for arbitrary, reduced-

dimensional (2D or 3D) potential energy 

surfaces of polyatomic molecules.

Do this by integrating nuclear Schrödinger 

equation (second-order partial differential 

equation, PDE) on potential energy surface. 

Can do this by numerical integration.  

Many methods available.



Finite element method (FEM)

• PhD student Dong Xu selects FEM to 

expand this to higher dimensionality: 

- Approximate the solution to the Schrödinger PDE 

(rather than approximating the PDE itself) by 

breaking the wavefunction into polyhedra,  Each 

polyhedron is a localized basis function. 

- Successively improve the wavefunction by an 

estimator for the errors at the boundaries.



FEMvib program

Works for any bounded potential energy surface, 

using orthogonal or non-orthogonal coordinates.

Verify this with several test cases…



2D Henon-Heiles

Potential
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Cremers and Mielke, 2006
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FEMvib.

Tests all successful.  

Ready for a real problem.



3-D harmonic oscillator

FEMvib solves eigenstate # 202 with 

Ecalc = 15.7505 vs. Eexact=15.7500

V(x,y,z) = 0.5 x2 + 0.72 y2 + 0.845 z2

We can also graph the wavefunctions…
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Ar-H2O

Van der Waals complex with extremely 

anharmonic vibrational modes.

R = 3.4 A R = 3.7 A



Fully ab initio solution 

• Calculated CCSD(T)/cc-pVTZ PES at 

~500 points over symmetry-unique   

R=2.5-5Å, q=0-p/2, f=0-p.

• Use Dunning’s correlation-consistent basis 

sets (with polarization functions) to 

extrapolate to complete basis set limit.

• Apply Counterpoise correction to basis set 

superposition error.



Lowest J=0 term energies (cm-1) of Ar-H2O.

state           AW2   FEM    state           AW2  FEM 

n=0 S(101)   15.3   16.7 n=2 S (000)  61.9   59.1

n=1 S (000)  35.4   30.3 n=0 S (202)  74.1   65.5

n=0 S (111)  43.7   40.6 n=0 S (212)  75.9   71.1

n=1 S (101)  49.7   50.7 n=1 S (111)  78.1   73.3

n=0 S (110)  57.8   52.9 n=2 S (101)  82.1   80.2

AW2 = Cohen & Saykally from experimental data

FEM = this work



Ar-H2O Wavefunctions

n=0 S(000) n=0 S(110)



Ar-H2O Wavefunctions

n=0 S(000) n=0 S(110)

Wait a minute… 



Ar-H2O Wavefunctions

n=0 S(000) n=0 S(110)

Wait a minute…  where’s the rest of the wavefunction?



But then why the right answer?

02  uVuu 

,

The vibrational Schrodinger equation

is given the following weak formulation

and apply Dirichlet boundary condition

 on0, vu

  


 .0n̂ duVvduvduv 

to eliminate second term



Particle in 1D box analogy: 

But actually we are requiring only that du is zero; not

sufficiently restrictive.



C8H7
This is not a problem

for most of our radical 

systems.



C8H7



C8H7



C8H7

Transition state



C8H7



C8H7



C8H7



New HC3O surface

q(HCC), q(CCO), R1-R2

• QCISD coupled cluster method

• cc-pVDZ basis set

• Still need to apply CBS extrapolation



HC3O surface

R1-R2 = 0.00



HC3O surface

R1-R2 = 0.05



HC3O surface

R1-R2 = 0.10



HC3O surface

R1-R2 = 0.15



HC3O surface

R1-R2 = 0.20



HC3O surface

R1-R2 = 0.25



Other systems: ZnCl2
+

Wenli Zou and 

James Boggs, 

UT Austin
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Other systems: ZnCl2
+

(ν1,ν2,ν3) Energy (cm-1)

(0,0,0) 176

(0,0,1) 281

(1,0,0) 409

(1,0,1) 537

(0,0,2) 596

(2,0,0) 673

(0,0,3) 781

(2,0,1) 826

(1,0,2) 873

(3,0,0) 953

Assignment of traditional 

quantum numbers becomes 

ambiguous after a few 

excitations, but the 

experimental observables 

(energies, vibrational 

amplitudes, etc.) still 

interpretable in this analysis.



Other systems: H transfer catalysis

Douglas Grotjahn 

& group



Hydration step



Hydration step
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Reaction diagram for hydration



Conclusions

• New program for modeling complex 

vibrational quantum mechanics of 

polyatomics working 

• Just now getting back to the radicals that 

inspired the work



Future work

• Periodic coordinates

• Correct for zero-point energy variations in 

other coordinates  

• Finish web interface
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