Causal inference with
multivariate neurophysiological data:
Some computational issues
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Brain dynamics physically govern
brain activity, while brain algorithms
. . computationally implement brain
A|80rltth/Dynam|CS functions. Algorithms/dynamics must
be studied indirectly, i.e., inferred
from experimental data plus theory
plus modeling.

Conjecture: Brain algorithms
are dynamic, and brain
dynamics are algorithmic.
l.e., physics and computation
are deeply united in the brain

Activity at all organizational levels.

Function

Cognitive neuroscientists
design tasks which engage
brain functions like
detecting, monitoring,
predicting, recalling,
deciding, controlling, etc.

Neuroimaging and
neurophysiological measures
reflect brain activity, e.g.,
hemodynamic (~energy) or
neuroelectric (~“information)
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Figure 1.4 Schematic illustration of levels of organization in the nervous system. The spatial
scales at which anatomical organizations can be identified varies over many orders of magnitude.
lcons to the right represent structures at distinct levels: (top) a subset of visual areas in visual
cortex (van Essen and Maunsell 1980): (middle) a network model of how ganglion cells could be
connected to simple cells in visual cortex (Hubel and Wiesel, 1962), and (bottom) a chemical
synapse (Kandel and Schwartz, 1985). (From Churchland and Sejnowski 1988
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Levels of Organization vs. Levels of Analysis
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Partially adapted from T Sejnowski and PS Churchland {1585): Brain and Cognition. In MI Posner {ed.), Foundabions of Cognibive Sclance




Gross dissection of
fiber bundles

Anatomical / Microscopic
Structural methods

Diffusion Spectrum
Imaging (DSI)
tractography

Temporal

o Cross-correlation
covariation

Phase
synchronization

Brain connectivity

“Co-oscillation”

Effective / Causal <

Composite
synchrony profile
(CSP)

Functional

Structural equation

modeling (SEM)
Model-based
Dynamic causal

modeling (DCM)

Granger causality

Model-free
Quasi-causal

information (QCl)




A-L Foville. Traité complete de I'anatomie. 1844.
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Human Connectome Project

NIH Blueprint for Neuroscience Research: S30M

Systematic collection of noninvasive brain imaging data (DSI
tractography, resting state fMRI, EEG/MEG) from 100s of
healthy subjects

“The HCP is truly a grand and critical challenge: to map the
wiring diagram of the entire, living human brain.” -Thomas
Insel, Director of NIMH

“Neuroscientists have only a piecemeal understanding of
brain connectivity. If we knew more about the connections
within the brain—and especially their susceptibility to
change—we would know more about brain dysfunction in
aging, mental health disorders, addiction and neurological
disease.” -Story Landis, Director of NINDS

Data publicly available in ~5 years



MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES
RESEARCH REVIEWS 13: 85-95 (2007)
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THE STUDY OF AUTISM AS A
DISTRIBUTED DISORDER

L1 d.)
Ralph-Axel Miiller"~*
"Brain Development Imaging Laboratory, Department of Psychology, San Diego State Universaty, San Dhego, Cahfornia

2l_jlul:u:irl:rrmnl: of Cognitive Science, Univeraty of California, San Diego, Cabifornia

Past autism research has often been dedicated to tracing the
causes of the disorder to a localized neurological abnormality, a single
functional network, or a single cognitive-behavioral domain. In this
review, | argue that autism is a “distributed disorder” on various levels of
study (genetic, neuroanatomical, neurcfunctional, behavioral). “Localizing™
models are therefore not promising. The large array of potential genetic
risk factors suggests that multiple (or all) emerging functional brain net-
works are affected during early development. This is supported by wide-
spread growth abnormalities throughout the brain Interactions during
development between affected fundional networks and atypical experi-
ential effects (assodated with atypical behavior) in children with autism
further complicate the neurological bases of the disorder, resulting in
an “exponentially distributed” profile. Promising approaches to a better
characterization of neural endophenotypes in autism are provided by
technigques investigating white matter and connectivity, such as MR spec-
troscopy, diffusion-tersor imaging (DTN, and functional connectivity MRI.
According to a recent hypothesis, the autistic brain is generally character-
ized by “underconnectivity.” However, not all findings are consistent with
this view. The concepts and methodology of functional connectivity need
to be refined and results need to be corroborated by anatomical studies
{such as DTl tractography) before definitive conclusions can be drawn.

processes that are present during development. It 15 this course
of developmental events that will ultmately allow a bran
region, such as inferior frontal cortex, to participate n a
spectfic set of funcoons, such as language [tor detailled discus-
sion, see Miller, in press-b.

Given this approach, developmental disorders cannot be
understood wsing adult chmcal models of lesion-symptom
correspondences. The notion of “residual normahty,” accord-
ing to which a localized damage removes well-defined compo-
nents from a functional system, leaving other components
intact, has been applied to the mature nervous system, with
some—probably debatable—success. Residual normality can-
not, however, apply to the developing brain because interac-
tive effects between brain regions and between functional sys-
tems are a known fact [see Thomas and Karmiloff-Smith,
2002 for an extensive debunking|. Therefore, it 15 not surpris-
ing that damage to left infenor frontal cortex (Brocas area) or
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Electrocorticography - ECoG

R. Emerson MD, Columbia P&S
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From Richard
Greenblatt’s CSRC
colloquium talk of 10/30;
collaboration with Leo
Towle & Alex Ossadtchi




QCl — Theta/High Gamma




Norbert Wiener

The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel 2003

"for methods of "for methods of
analyzing economic analyzing economic
time series with time time series with
-varying volatility common trends
(ARCH)" (cointegration)"

Robert F. Engle Il Clive W.J. Granger
Born Movember 26, 1894
Columbia, Mizzouri, 1.5, @ 1/2 of the prize @ 1/2 of the prize
Died March 18, 1964 (aged 69) USA Eiesleh ingriom
Stockholm, Sweden
Hationality American New York University University of California
Fields Mathematics New York, NY, USA San Diego, CA, USA
Cybernetics
o b. 1942 b. 1934
Institutions Magsachuszetts Institute of Technology d. 2009

nobelprize.org



Wiener-Granger Causality

* “Suppose that we have three terms, X(t), Y(t), and W(t),
and that we first attempt to forecast X(t+1) using past
terms X(t) and W(t). We then try to forecast X(t+1) using
past terms X(t), Y(t), and W(t). If the second forecast is
found to be more successful, according to standard cost
functions, then the past of Y appears to contain information
helpful in forecasting X(t+1) that is not in past X(t) or W(t).
In particular, W(t) could be a vector of possible explanatory
variables. Thus, Y(t) would ‘Granger cause’ X(t+1) if (a) Y(t)
occurs before X(t+1); and (b) it contains information useful
in forecasting X(t+1) that is not found in a group of other
appropriate variables.” -Clive WJ Granger

* Typically based on linear regression of stochastic processes.
e See: Seth AK (2007): Scholarpedia 2(7):1667.



Quasi-Causal Information (QCl) is a measure
within a framework for statistical inference
which addresses the following question:

To what extent is it possible to infer, statistically,
effective connectivity /lag spectra between two
brain areas X and Y via observation only of
neurophysiological time series measured from
areas X, Y, and other areas (Z4, £>, ..., Z,),
without strong modeling assumptions about the
network topology or about the functional forms
of inter-areal interactions?




Conditional Mutual Information
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e.g., Cover & Thomas



Linear Entropy Uses
Gaussian Probability Densities

H,(X) = Zlog(27¢) + %Zlog[C]f
i=1

Shannon



Nonlinear Entropy Uses
Non-Gaussian Probability Densities
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Linear vs. Nonlinear

Singular Spectrum Analysis
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Schema for event-related data
and statistical significance testing

S1 T< TO T> 52

iTROS
I

1(X(T<), Y(T>) | X(T>), Y(T<), X(TO), Y(TO), Z())
1(X(T>), Y(T<) | X(T<), Y(T>), X(TO), Y(TO), Z())

Null distribution: Destroy causality by randomly interchanging
T< and T> across trials



Hippocampus circuit schematic
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Fig. 11.5. Summary diagram of the major intrinsic connections of the rat hippocampal formation
and several of the extrinsic cortical inputs. This diagram emphasizes the serial and parallel aspects
of the intrinsic hippocampal circuitry. See text. Abbreviations: DG, dentate gyrus; CA3, CAl fields
of the hippocampus; EC, entorhinal cortex; PR, perirhinal; POR, postrhinal; PrS, presubiculum;
PaS, parasubiculum; Par/Oc Ctx, parietal occipital cortices; RSP Ctx, retrosplenial cortex.

Johnston D, Amaral DG, chap. 11 in GM Shepherd (ed.), The Synaptic
Organization of the Brain (5t edition), 2004, p. 462.



Boutros-Bonn paired click intracranial EEG

Rhinal = Hippocampal linear QCI significances for paired click paradigm

S1 (20-180 ms) S2 (520-680 ms)

Nonzero
test

Directional f' : F = f *
difference |z = »
test | :

100 paired clicks: S1 to S2, 500 ms; S2to S1, 8 s
e “States”: analytic time series via Hilbert transform
* Linear QCl with minimal confounds




Posterior HPC — Prefrontal, paired click
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Repeated pattern. First, prefrontal >HPC at 85 ms flips to HPC—> prefrontal at 150 ms.
Then again, prefrontal >HPC at 300 ms flips to HPC—2> prefrontal at 365 ms.




Computational Issues ()

* Long computation time, especially for
randomization statistics

— Parallel computations for pairs, context, bands,
and randomizations

 Combinatorial explosion of possible contexts
— Limit by known anatomical connections

e How to handle areas not measured, but
anatomically connected?
— Use computational modeling to fill in
— Incorporate lag information



Computational Issues (lI)

Data mining problem

— “search for intracranial intelligence”
Diminishing statistical significance: Multiple
comparisons explode as search continues
Merging results across participants

— Individual differences probably more variable for
functional/effective connectivity

What can we learn about “communication
channels” within brain-wide networks?

— From physical measures to bio-communicational and
bio-computational significance



Ongoing work

Side-by-side comparison of QCI with Granger
causality (Huhn, Erdi)

Intracranial validation study with CCEP data
(Burgess, Enatsu)

Extracranial-to-intracranial validation study with
same patient, same task data (Boutros)

Cognitive applications (Boutros; Clark, Moores,
Greenblatt)

Epilepsy applications (Towle, Greenblatt,
Ossatdchi)



