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Background and Motivation
Explanatory levels in neuroscience:

Ways of talking about brains and behavior

Psychology, cognitive science, linguistics

Anatomy (where)
Cellular neurophysiology (how)

Reductionist 
explanations

Synthetic (bridging) explanations
  Systems theory (dynamic,      
nonlinear, complex, qualitative)
  AI/ANN
  Large scale physiological networks



  

Where does the human data come from?
Brain Imaging Modalities
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From 
neuron to 

field 
potentials



  

Electrocorticography - ECoG

R. Emerson MD, Columbia P&S



  

Clinical Seizure – Video ECoG
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Phase Synchrony

Note: Phase synchrony is independent of signal amplitude
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Hilbert Transform
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infinite support
singularity at t=t'
non-causal

Cohen L, Time-Frequency Analysis, 1995



  

Hilbert transform – square wave

http://en.wikipedia.org/wiki/Hilbert_transform



  

Phase Locking Value - PLV



  

Normed 
Aggregate 
Synchrony 

Matrix - 
Algorithm



  

Normed Aggregate Synchrony 
Matrix – Seizure Data



  

Composite 
Synchrony 

(CSP) 
Algorithm



  

Deterministic clustering algorithm

H()=Heaviside step function


R

PLV
Reduced 
by SVD 
truncation

i0=arg maxi∑ j
H crit−r ij

I 0={ j : ri0 jcrit }

Find cluster nucleus

Find cluster members

NN min

Remove cluster

Statistical testing

N min=2

crit=argmin {∑k=1

N c

∑ j∈C k
∥ j

R
−k ∥

2
}

k = k-th cluster center
 j
R = j-th row of R
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PLV/CSP – Seizure Data

Ossadtchi et al., J Clin Neurophysiol (submitted)



  

PLV/CSP – Seizure Data

Ossadtchi et al., J Clin Neurophysiol (submitted)
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Event-related ECoG - Data



  

Event-related data analysis: 
Averaging

Multichannel time series data

Event-related time domain
averaging



  

Event-related ECoG - Averaging



  

Event-related data analysis: 
Time-frequency Averaging

Multichannel time series data

Event-related time 
domain

averaging

Event-related 
time-frequency 

domain
averaging



  

Event-related ECoG - Time-
Frequency



  

Event-related data analysis: 
network identification

Multichannel time 
series data

Event-related time 
domain

averaging

Event-related 
time-frequency 

domain
averaging

Imaging data (MR, CT)
Multichannel time 

series data

Phase synchrony 
estimation (erPLV)

Phase synchrony 
visualization (NASM)

Network identifcation
(CSP – composite
Synchrony profile)



  

PLV/CSP – 
Event-
related 
ECoG – 

word 
recognition 

task
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PLV/CSP – 
Event-
related 
ECoG – 

word 
recognition 

task



  

Event-related data analysis: 
network characterization

Multichannel time 
series data

Event-related time 
domain

averaging

Event-related 
time-frequency 

domain
averaging

Imaging data (MR, CT)
Multichannel time 

series data

Phase synchrony 
estimation (erPLV)

Phase synchrony 
visualization (NASM)

Network identifcation
(CSP – composite
Synchrony profile)

Cross time-frequency
synchrony

Quasi-causal
Information

(QCI)



  

QCI – Theta/High Gamma
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Conclusions

We describe procedures for identifying brain 
networks from electrophysiological data

Normed aggregate synchrony

Composite synchrony profile

When applied to seizure data, we find clinically 
reasonable seizure networks, including 
temporal/limbic and parietal/frontal

When applied to event-related data, we find 
evidence for a newly observed phenomenon, 
the network cascade



  

Future directions

Basic Research

Verify and characterize network cascade

Clinical Research

Networks and seizure onset

Software technology

Verification and validation

Extension

Usability
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Thank you for your attention



  

Subspace 
clustering
Subspace dimension R is 
determined by comparing the 
singular value spectrum S with the 
spectrum of a random matrix with 
the same Frobenius norm as Ψ



  

Deterministic clustering algorithm

H()=Heaviside step function


RPLV

Reduced
dim = N×R

R
Euclidean 
distances
dim = R×R

i0=arg maxi∑ j
H crit−r ij

I 0={ j : ri0 jcrit }

Find cluster nucleus

Find cluster members

NN min

Remove cluster
from R

Statistical testing

N min=2

crit=argmin {∑k=1

N c

∑ j∈C k
∥ j

R
−k ∥

2
}

k = k-th cluster center
 j
R = j-th row of R



  

Cluster 
significance 
testing


