

Florent Angly

Ecological importance of viruses

Ubiquity

Large abundance

Global impact

Metagenomics

Environmental sample: uncultured phages

Environmental phage DNA

Who is there?

What do they do?

16S rDNA

How many are they?

Taxonomy

Function

Diversity

Diversity

http://www.gma.org/herring/biology/distribution/comparing_oceans.asp

 α -diversity: richness, evenness, indices

Shannon-Wiener index:
$$H' = -\sum_{i=1}^{S} r_i \ln r_i$$
 S: richness r_i : relative abundance of the i^{th} species

S: richness of the *i*th species

Hypothesis and plan

Is it possible to estimate viral diversity from metagenomes? If so, how?

- 1. α -diversity (PHACCS)
- 2. β -diversity (MaxiPhi)
- 3. Average genome length (GAAS)
- 4. Diversity workflow
- 5. Environmental viral diversity

- 1 -

 α -diversity

PHACCS

α -diversity from metagenomic data

 α -diversity: local diversity (one sample)

- 1. Assemble metagenomic sequences
- 2. Count the number of contigs
- 3. Assume that only sequences from the same species form contigs
- 4. Model diversity: the more abundant a species, the larger the number of its sequences forming contigs

PHACCS Phage communities from Contig Spectrum

$$c_q = \sum_{i=1}^{M} n_i w_{qi}$$

- n_i : expected number of sequences for species i
- w_{qi} : probability that a sequence of species i is in a contig of size q

Assumptions:

- No chimeric contigs
- Rank-abundance distribution
- Genomes have an average length

Community structure and diversity

- 2 -

 β -diversity

MaxiPhi

β -diversity from metagenomic data

• β -diversity: difference in diversity between several samples

Cross-contig spectrum

Circonspect

Modeling β -diversity

Percent shared and percent permuted

Environment 1 (e.g., SAR)

Environment 2 (e.g., BBC)

- 3 -

Average genome length

GAAS

Genome length of different organisms

Microbes and viruses

GAAS

Complete genome database

Cutoff alignment E-value, identity percent, and relative length

For each query sequence *i*, keep all the similarities to genomes *j* but give similarities a weight that has a statistical meaning:

 $W_{ij} \propto k_i / E_{ij}$

 w_{ij} : weight E_{ij} : E-value k_i : constant

Normalize by genome length

Environment

10x genome size difference Same relative abundance Metagenome

10x more sequences from the larger genome

Genome length in the environment

Meta-analysis of 174 metagenomes

- Variability between biomes
- Variability within biomes
- Variability within sample

- 4 -

Diversity workflow

Diversity workflow

α -diversity

Logout
Welcome, Florent Angly

- 5 -

Environmental viral diversity

α -diversity of four viromes

PHACCS estimate of community structure and diversity

Marine latitudinal gradient of diversity

- The latitudinal richness gradient is the most documented pattern:
 Higher diversity close to the tropics
- Affects macroorganisms
 (Hillebrand et al. 2004),
 microorganisms (Pommier
 et al. 2007, Fuhrman et al. 2008)
- Affects viruses?
- How universal are the rules that govern the distribution of life on Earth?

Viral richness in the oceans

Angly et al. 2006

Marine β -diversity

 Viruses are dispersed world-wide

- "Everything is everywhere"
- Marine viruses are cosmopolitan but the environment selects!

Diversity in the Line islands coral reefs

Atoll	Human population	Viral richness		Viral β -diversity					
					PALMYRA	TABU	AERAN	KIRITIMATI	
Kingman	0	8,380	Fraction of genotypes shared	KINGMAN					
Palmyra	20	17,100		PALMYRA		1		1	
Tabuaeran	1,000	24,800					1		
Kiritimati	5,100	102,000		TABUAERAN					
					Fraction	n of most abur	dant genotyp	oes permuted	
				Sa	ndin et al 2008		Plot by S	teve Rayhawk	

Conclusions

Metagenomics is well suited to investigate the diversity of uncultured viral communities

Novel computational methods: GAAS, Circonspect, PHACES, MaxiPhi

Publicly available tools and integration into easy-to-use software workflow

Diversity methodology does not require similarities to databases

Viral diversity may follow the same patterns of diversity as microorganisms and macroorganisms

As more and more viral metagenomes are sequenced, the metagenomic diversity workflow will be used to analyze the global virome and estimate Earth's total viral richness

Viral metagenome locations

Acknowledgments

Rob Edwards
Peter Salamon
Ben Felts
Jim Nulton
Joseph Mahaffy
Robert Schmieder
Liz Dinsdale
Alejandra Prieto-Davo

Rohwer Lab

Forest Bahador

Beltran

Dana

John

Katie

Linda

Liz

Mark

Matt

Mike

Yan Wei

Anna
Becky
Bethany
Betty
Christelle
Cynthia
David
Danielle

Elysa Emiko Fairoz Karin

Jennifer John

Marina Megan

Morrigan Mya

Neilan Olga Priscila

Priscila Selina

Steve Veronica

Yanan

. . .

