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Motivation

    

      SPAWAR researchers are looking into issues ranging from 
nonlinear dynamics of sensors, and Microelectromechanical 
systems (MEMS) to bring about improvements in current systems. 
The Advanced Dynamics Research group at SPAWAR is globally 
recognized as one of the premier groups for research in nonlinear 
dynamics and, possibly, the leading group on practical applications. 

     This work has led to a compact, cheap and sensitive room 
temperature magnetometer that the Marine Corps is considering as 
an intrusion sensor.  This talk with feature an overview of how 
nonlinear science is applied into actual devices and systems.



 Mine-detection using RUVs or other technique
 Wide area surveillance using large numbers of networked sensors (sensors are compact and 

cheap…”throw-away”) around harbors, choke points, battlefields,etc.
 Bottom or buoy-mounted “tripwire” early-warning system
 Commercial applications: medical scanning, baggage scanning, etc.
 Assorted battlefield applications
 Special military applications 
 “Exotica”…coupling fluxgates in a ring: improved sensitivity (SNR), ability to detect cyclic signals, 

and more…

Airport metal detectorsMine detectors

Remote sensors

Medical imaging System

Potential Applications: Advances in Sensors

Location of Sensor



Simplify

The Co-site Interference Challenge Worsens



SQUID/SQIF work



Background

Modeling DC SQUID

Using the Josephson relations
we can describe the dynamics of 
the DC-SQUID by the phase 
difference across the two 
junctions and arrive at following 
equations:

where β  = 2πLI0/ Φ0  is the nonlinearity parameter, τγ  =τ/I0  is a rescaling of 

the time constant and J = Is/I0 is the normalized biased current and xe = Φe/Φ0 
and is the external flux normalized to the flux quantum.

Figure Courtesy of: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/sqzuid.html

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/sqzuid.html


Dynamics of SQUID array

λ = Inductive Coupling parameter 

λ



DC SQUID Voltage-Flux response (N=1 & 50)

Periodic Voltage Response for Uniform Arrays

Voltage response vs. the external magnetic field for a uniform 
SQUID array, where N = 1, β = 0.1, and Ib = 1.001Ic.

Voltage response vs. the external magnetic field for a uniform 
SQUID array, where N = 50, β = 0.1, and Ib = 1.001Ic.

N = 1 N = 50 Series or Parallel (Voltage response similar to single devices)

xe xe



1D-SQIFs (variations in loop sizes)

Serial SQUID array

Parallel 
SQUID array



SQIF Voltage Response (N=50)

 Non-uniform SQUID array
 Varying  loop sizes
 Anti-peak at zero magnetic field

Voltage response vs. the external magnetic 
field for a uniform SQUID array, where 
N = 50, βmax = 1.0, and Ib = 1.001Ic.



Dynamic Range:  Parameter Variation

Increase maximum voltage swing as number of loops (N) increases. 

Numerical Computational demand increases as the number of loops increase.

  HPC needed for parallelization. 



Coupled SQUIDs Theory/Design

THEORY DESIGN

Applied to real world devices that 
will improve existing technology.



Coupled Sensor Devices

[1] Coupled Fluxgate System
[2] Coupled Bistable Elements: MEMS design 
[3] Coupled Array Design
[4] Coupled Systems: Multi-frequency
[5] Locomotion Gaits
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[1] Coupled Fluxgate System
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Fluxgate magnetometers are magnetic field 
sensors used to measure the magnitude and 
direction of low frequency-dc, low intensity 
magnetic fields.

Experimental data showing oscillations
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Coupled System: Dynamical Equations
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Single Fluxgate

f(t) is some periodic forcing function 
(square wave, sinusoidal, triangle wave, etc)

Coupled Fluxgates

N odd



Bifurcation diagram

Emergent oscillations in unidirectionally coupled overdamped bistable systems!



  With much calculations, we derived an expression for the critical coupling 
strength, λc where the bifurcation occurs.

This expression agrees 
very well with the results 
obtained from numerical 
calculations!

Critical value for bifurcation

λc

( ) ( )[ ]1lntanh1ln
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Detection of a ‘target’ signal

The asymmetry introduced by a “target signal” is greatly amplified near 
the onset of the bifurcation point resulting in great sensitivity of the 
instrument to resolve the target signal
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Applying Incoming Signal to Coupled System
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Example of an oscillation at 1/3 the frequency
of the incoming signal (black).  

Bifurcation diagram illustrating the different 
oscillating regions.  We are interested in 
operating the system in the middle region 
where frequency of each individual element 
oscillates at 1/3rd the frequency of the 

incoming signal. (ωVi = ω /3.) 
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[2] Coupled Bistable Elements: MEMS design 
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Oscillation: Simulation & Experimental Data
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 [3] Coupled Array Design

Input and
Matching 

Network ckt 2

Bias Pots 
for Is, Ic, 

and Ig ckt 2
Outputs 
for ckt 2

Chip

Input and
Matching 

Network ckt 1

Bias Pots 
for Is, Ic, 

and Ig ckt 1

Outputs 
for ckt 1

The Table represents the down-conversion 
ratios between the frequency of the X array 
(first array), and Y array (second array), for 
a network of two coupled arrays 
interconnected as is shown in Figure above, 
where k positive integer.
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Results: Coupled Array Design

Numerical Simulation Experiment 
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Network Connectivity
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be the state of the left array. Similarly the 
Y-array has the same set up such that the 
state of the entire network, at any given 
time, is described by ( X(t), Y(t) ).

Network Equations

Let the left array be described by

where Xi  is the state of cell i, h( ) is 
the coupling function, and aij is the 
coupling coefficient.
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[4] Coupled Systems: Multifrequency
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The voltage measurements of the electronic network clearly confirm the finding.
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The in-phase pattern is clearly oscillating at three times the frequency of the out-of-phase (traveling wave) pattern.  
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[5] Locomotion Gaits



Locomotion Gaits (experiment)



Summary

We have shown with theory and 
numerical simulations how to take 
advantage of nonlinear phenomena 
in order to improve, and design the 
next generation devices. Our group 
has many patents, and publications 
documenting these unique projects. 
Currently many projects are 
underway, and the transition to the 
nonlinear world has begun! 

http://www.icand2010.org/Lake Louise, Alberta, Canada, September, 21-25 2010 

http://www.icand2010.org/
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Example:  Over-Damped Duffing Systems (N=3)


