

SSC PACIFIC: APPLICATIONS IN NONLINEAR SCIENCES

Modeling Nonlinear Dynamics Systems

Dr. Patrick Longhini SSC Pacific, Code 71730 Email longhini@spawar.navy.mil

Collaborators

SSC Pacific Team: Code 71730 & *71130

Dr. Visarath In Dr. Adi Bulsara Dr. Joseph Neff Anna Leese de Escobar* John Cothern Andy Kho Norman Lui Eric Bozeman Fernando Escobar* SDSU

Prof. Antonio Palacios Grad students -Susan Guyler -Huy Vu -John Aven

Motivation

- Potential Applications
- Coupled SQUID/SQIF work
- Coupled Fluxgate
- Other Coupled Devices
- Questions

SPAWAR researchers are looking into issues ranging from nonlinear dynamics of sensors, and Microelectromechanical systems (MEMS) to bring about improvements in current systems. The Advanced Dynamics Research group at SPAWAR is globally recognized as one of the premier groups for research in nonlinear dynamics and, possibly, the leading group on practical applications.

This work has led to a compact, cheap and sensitive room temperature magnetometer that the Marine Corps is considering as an intrusion sensor. This talk with feature an overview of how nonlinear science is applied into actual devices and systems.

Potential Applications: Advances in Sensors

- Mine-detection using RUVs or other technique
- Wide area surveillance using large numbers of networked sensors (sensors are compact and cheap..."throw-away") around harbors, choke points, battlefields,etc.
- Bottom or buoy-mounted "tripwire" early-warning system
- Commercial applications: medical scanning, baggage scanning, etc.
- Assorted battlefield applications
- Special military applications
- "Exotica"...coupling fluxgates in a ring: improved sensitivity (SNR), ability to detect cyclic signals, and more...

Medical imaging System

Location of Sensor

Remote sensors

Mine detectors

Airport metal detectors

The Co-site Interference Challenge Worsens

SQUID/SQIF work

Background

Modeling DC SQUID

Using the Josephson relations we can describe the dynamics of the DC-SQUID by the phase difference across the two junctions and arrive at following equations:

Figure Courtesy of: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/sqzuid.html

$$\tau_{\gamma}\dot{\delta}_i = J + \frac{(-1)^i}{\beta}(\delta_1 - \delta_2 - 2\pi x_e) - \sin(\delta_i), \quad i = 1, 2.$$

where $\beta = 2\pi L I_0 / \Phi_0$ is the nonlinearity parameter, $\tau_{\gamma} = \tau / I_0$ is a rescaling of the time constant and $J = I_s / I_0$ is the normalized biased current and $x_e = \Phi_e / \Phi_0$ and is the external flux normalized to the flux quantum.

Figure 1: Network of series SQUID array.

The dynamics of the serial SQUID array is described by the following differential equations

where

$$I_m = \frac{I_{c,m}}{\beta_m} [\varphi_{m,1} - \varphi_{m,2} - 2\pi x_e]$$

for j = 1, 2, and $k = 2 \dots N - 1$, such that N is the number of SQUID loops, λ is the normalized inductive coupling coefficient, and β_k is the nonlinear parameter related to the size of each loop.

Periodic Voltage Response for Uniform Arrays

1D-SQIFs (variations in loop sizes)

Serial SQUID array

SQIF Voltage Response (N=50)

Increase maximum voltage swing as number of loops (N) increases.

Numerical Computational demand increases as the number of loops increase.

HPC needed for parallelization.

Coupled SQUIDs Theory/Design

THEORY

Applied to real world devices that will improve existing technology.

Coupled Sensor Devices

[1] Coupled Fluxgate System

[2] Coupled Bistable Elements: MEMS design

[3] Coupled Array Design

[4] Coupled Systems: Multi-frequency

[5] Locomotion Gaits

[1] Coupled Fluxgate System

Fluxgate magnetometers are magnetic field sensors used to measure the magnitude and direction of low frequency-dc, low intensity magnetic fields.

$$c = 3, \lambda = -1.2, \varepsilon = 0.0$$

Experimental data showing oscillations

Coupled System: Dynamical Equations

Single Fluxgate

 $\dot{x} = -x + \tanh c(x + f(t) + \varepsilon)$

f(t) is some periodic forcing function (square wave, sinusoidal, triangle wave, etc)

Coupled Fluxgates

$$\dot{x}_{1} = -x_{1} + \tanh c(x_{1} + \lambda x_{2} + \varepsilon)$$

$$\dot{x}_{2} = -x_{2} + \tanh c(x_{2} + \lambda x_{3} + \varepsilon)$$

$$\vdots$$

$$\dot{x}_{n} = -x_{n} + \tanh c(x_{n} + \lambda x_{1} + \varepsilon)$$

Bifurcation diagram

Emergent oscillations in unidirectionally coupled overdamped bistable systems!

With much calculations, we derived an expression for the critical coupling strength, λ_c where the bifurcation occurs.

Detection of a 'target' signal

The asymmetry introduced by a "target signal" is *greatly amplified near the onset of the bifurcation* point resulting in great sensitivity of the instrument to resolve the target signal

Applying Incoming Signal to Coupled System

SPAWAR

Systems Center PACIFIC

Bifurcation diagram illustrating the different oscillating regions. We are interested in operating the system in the middle region where frequency of each individual element oscillates at $1/3^{rd}$ the frequency of the incoming signal. ($\omega_{Vi} = \omega/3$.)

Example of an oscillation at 1/3 the frequency of the incoming signal (black).

[2] Coupled Bistable Elements: MEMS design

- $\mathbf{C}_{\scriptscriptstyle L}$: Total parasitic capacitance at the output node of the i-th element
- V_i : Differential output of the *i*-th element
- V_{sig} : Differential input signal
- g : Linear conductance
- $c_{\rm c},\,c_{\rm s},\,c_{\rm g}$: Intrinsic transistor parameter
- I_c, I_s, I_a : Bias current

Oscillation: Simulation & Experimental Data

[3] Coupled Array Design

Results: Coupled Array Design

Numerical Simulation ή 1 -2 L 0 1 2 3 4 5 6 7 × 10⁻⁸ ᠕ᡧ᠋ᢉᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗᡧᡗ V 4-6 -2Ľ 0 2 3 5 1 4 б 7 time (ms) x 10⁻⁸

Second array to response at 1/5th the frequency of 1st array.

Experimental work demonstrates patterns predicted.

[4] Coupled Systems: Multifrequency

Network Equations

Let the left array be described by

$$\frac{dX_i}{dt} = f(X_i) + \sum_{j \to i} \alpha_{ij} h(X_i, X_j)$$

where X_i is the state of cell *i*, h() is the coupling function, and a_{ij} is the coupling coefficient.

Let $X(t) = (X_1(t), X_2(t), \dots, X_N(t))$

be the state of the left array. Similarly the Y-array has the same set up such that the state of the entire network, at any given time, is described by (X(t), Y(t)).

The voltage measurements of the electronic network clearly confirm the finding.

Results for Multifrequency

Numerical Simulation

The in-phase pattern is clearly oscillating at three times the frequency of the out-of-phase (traveling wave) pattern.

[5] Locomotion Gaits

FitzHugh-NagumoNeuron Model $\dot{x} = c(x + y - \frac{1}{3}x^3) \equiv f_1(x, y)$ $\dot{y} = -\frac{1}{c}(x - a + by) \equiv f_2(x, y)$ a = 0.02, b = 0.2, c = .5

Coupling Scheme

$$\dot{x}_{i} = f_{1}(x_{i}, y_{i}, \lambda) + X_{Dir}(x_{i-2} - x_{i}) + X_{Bi}(x_{i+\varepsilon} - x_{i})$$
$$\dot{y}_{i} = f_{2}(x_{i}, y_{i}, \lambda) + Y_{Dir}(y_{i-2} - y_{i}) + Y_{Bi}(y_{i+\varepsilon} - y_{i})$$

$$\varepsilon = \begin{cases} +1 & i \text{ odd} \\ -1 & i \text{ even} \end{cases}$$

i = 1, ..., 8, the indices are taken modulo 8

Primary Gaits Created by Hopf Bifurcations

Different gaits are generated by changing the coupling strengths.

Summary of Coupling Signs

Gait	X _{Dir}	X _{Bi}	Y _{Dir}	Y_{Bi}
Pronk	+	+	+	+
Pace	+	-	+	-
Bound	-	+	-	+
Trot	-	_	-	+
Jump	-	+	+	+
Walk	-	-	+	+

Locomotion Gaits (experiment)

Nonlinear Science in Action!

Summary

We have shown with theory and numerical simulations how to take advantage of nonlinear phenomena in order to improve, and design the next generation devices. Our group has many patents, and publications documenting these unique projects. Currently many projects are underway, and the transition to the nonlinear world has begun!

International Conference on Applications in Nonlinear Dynamics Lake Louise, Alberta, Canada, September, 21-25 2010 http://www.icand2010.org/

Published Papers

- H. Vu, A. Palacios, V. In, P. Longhini, J. Neff. Exploiting Two-time scale analysis of a ring of coupled vibratory gyroscopes. Submitted to Physical Review E (2008).
- M. Hernandez, V. In, P. Longhini, A. Palacios, A. Bulsara, and A. Kho. Coupling-induced Oscillations in Nonhomogeneous, Overdamped, Bistable Systems. Physics Letters A, 372, no. 24, 4381-4387 (2008).
- A. Bulsara, V. In, A. Kho, A. Palacios, P. Longhini, S. Baglio, and B. Ando. Exploiting nonlinear dynamics in a coupled core fluxgate magnetometer. Measurement Science and Technology 19, 075203 (2008).
- [3] P. Longhini, A. Palacios, V. In, J. Neff, A. Kho, and A. Bulsara. Exploiting dynamical symmetry in coupled nonlinear elements for efficient frequency down-conversion Physical Review E 76, 026201 (2007).
- A. Palacios, J. Aven, V. In, P. Longhini, A. Kho, J. Neff, and A. Bulsara. Coupled-core fluxgate magnetometer: Novel configuration scheme and the effects of a noise-contaminated external signal. Physics Letters A 367, 25-34 (2007)
- V. In, A. Bulsara, A. Kho, A. Palacios, S. Baglio, B. Ando and V. Sacco. Exploiting dynamic cooperative behavior in a coupled-core fluxgate magnetometer. Proceedings of the first Conference of Device Applications of Nonlinear Dynamics. Catania, Italy, 67-82 (2006).
- A. Palacios, J. Aven, P. Longhini, V. In, A. Bulsara. Cooperative dynamics in coupled noisy dynamical systems near a critical point; the dc SQUID as a case study. Physical Review E 74, 021122 (2006).
- V. In, A. Palacios, A. Bulsara, P. Longhini, A. Kho, Joseph Neff, Salvatore Baglio, and Bruno Ando . Complex behavior in driven unidirectionally coupled overdamped Duffing elements. Physical Review E 73, no. 6, 066121 (2006).
- A. Bulsara, J.F. Lindner, V. In, A. Kho, S. Baglio, V. Sacco, B. Ando, P. Longhini, A. Palacios, and W.J. Rappel. Coupling-Induced cooperative behavior in dynamic ferromagnetic cores in the presence of noise. Physics Letters A 353 (2006) 4-10.
- V. In, A. Bulsara, A. Palacios, P. Longhini, and A. Kho. Complex dynamics in uni-directionally coupled over-damped bistable systems subject to a time-periodic external signal. PRE E 72, no. 4, Rapid Communications 045104 (2005).
- A. Palacios, R. Carretero-Gonzalez, P. Longhini, N. Renz, V. In, A. Kho, J. Neff, B. Meadows, and A. Bulsara. Multifrequency synthesis using two coupled nonlinear oscillator arrays. Physical Review E 72, 026211 (2005).
- A. Bulsara, V. In, A. Kho, P. Longhini, A. Palacios, W-J. Rappel, J. Acebron, S. Baglio, and B. Ando. Emergent oscillations in unidirectionally coupled overdamped bistable systems. Phys. Rev. E 70, 036103-1-12 (2004).
- [4] V. In, A. Kho, J. Neff, A. Palacios, P. Longhini, and B. Meadows. Experimental observation of multi-frequency patterns in arrays of coupled nonlinear oscillators. Physical Review Letters 91, no. 24, (2003) 244101-244101-4.
- [1] V. In, A. Bulsara, A. Palacios, P. Longhini, A. Kho, and J. Neff. Coupling-induced oscillations in overdamped bistable systems. Physical Review E 68, Rapid Communication (2003) 045102-1.

Example: Over-Damped Duffing Systems (N=3)

$$\dot{x}_{1} = \lambda_{x}x_{1} - x_{1}^{3} + c_{x}(x_{1} - x_{2}) + c_{xy}\sum_{i=1}^{3}y_{i} \qquad \dot{y}_{1} = \lambda_{y}y_{1} - y_{1}^{3} + c_{y}(y_{1} - y_{2}) + c_{xy}\sum_{i=1}^{3}x_{i}$$
$$\dot{x}_{2} = \lambda_{x}x_{2} - x_{2}^{3} + c_{x}(x_{2} - x_{3}) + c_{xy}\sum_{i=1}^{3}y_{i} \qquad \dot{y}_{2} = \lambda_{y}y_{2} - y_{2}^{3} + c_{y}(y_{2} - y_{3}) + c_{xy}\sum_{i=1}^{3}x_{i}$$
$$\dot{x}_{3} = \lambda_{x}x_{3} - x_{3}^{3} + c_{x}(x_{3} - x_{1}) + c_{xy}\sum_{i=1}^{3}y_{i} \qquad \dot{y}_{3} = \lambda_{y}y_{3} - y_{3}^{3} + c_{y}(y_{3} - y_{1}) + c_{xy}\sum_{i=1}^{3}x_{i}$$

$$c_x = 1$$
, $c_y = 1$, $\lambda_x = 1$, $\lambda_y = 1$, $c_{xy} = .02$