A Novel Approach To Monte Carlo Sintering Simulation with Anisotropic Grain Growth

Gordon Brown, Richard Levine, Eugene Olevsky & Veena Tikare

Introduction

- Monte Carlo (MC) Potts models are widely used by researchers to simulate grain growth and sintering, weather forecasting, ocean currents, etc.
- Grain Size is an important parameter for porous material properties.
- Most models assume isotropic materials to simplify the problem.
- Anisotropy has a significant effect on grain growth rates and other

The Potts Model

- Structure discretized on lattice of sites.
 - Energy associated with sit
 - Configurations have
 Boltzman Distribution
- Potts Model Features
 - Equilibrium 8 -E(iO)tic $\frac{1}{2}$ E_{ij}

1st Nearest Neighbors 2nd Nearest Neighbors

6

3

7

2

4

5

8

Basic Potts Algorithm Step 1: Initialize the Lattice Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=1 Plot time=100 Ave. radius= 12.2042 Step 2: Grain Growth 20 - Grain Site changing state 60 Step 3: Pore Migration Adjacent Grain/Pore Pair 100 Transition 120 20 100 40 60 80 Step 4: Vacancy Annihilation

Introducing Anisotropy

Morhac & Morhacova

Yang et al. (1995)

Misorientation Angle (0% & 60% of Max) Yu & Esche

Introducing Anisotropy

Energy Anisotropy is introduced in the Jacobian used to Ampute – Use Wulff Plot for surface energy $0 \qquad q_i = q_i$

$$_{ij} = J_i + J_j - J_b \qquad q$$

Ellipsoidal Wulff Plot

 q_i

Two Cusp Wulff Plot

Introducing Anisotropy

 A significant factor affecting anisotropy in the Binding Energy, , is the misorientation between the two grains at the grain boundary.

- This has not yet been implemented in the coded simulation. J_{h}
- Currently assumes constant

Anisotropic growth

Start with aligned grains to see effects (AR 1,2,10).

Larger surface energy aspect ratios produce more anisotropy.

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time Asp Ratio=1 Plot time=100 Ave. radius= 12.2042

tice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=2 Plot time=100 Ave. radius= 7.7265

Latice is 120 x 120 with 5% pores and 3 MCS steps at start time Asp Ratio=10 Plot time=100 Ave. radius= 5.9872

Anisotropic Observations

Angles are correct (20, 30, & 40 deg.). Poor growth in non-neighbor directions.

Latice is 120 x 120 with 5% pores and 3 MCS steps at start time. Asp Ratio=10 Plot time=40 Ave. radius= 4.3534

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=10 Plot time=40 Ave. radius= 4.4567

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=10 Plot time=40 Ave. radius= 5.0536

Random Orientation

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=10 Plot time=101 Ave. radius= 5.3682

Non-neighbor directions

The aspect ratio of the max energy to min energy reduces as orientation moves away from neighbor directions.

Aspect ratio gets smaller off neighbor directions

Anisotropy Discussion

Anisotropy is apparentGrain Growth is slower with

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=1 Plot time=100 Ave. radius= 12.2042

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=10 Plot time=101 Ave. radius= 5.3682

Anisotropy Discussion

Growth is unaffected by lattice size.

Latice is 120 x 120 with 5% pores and 2 MCS steps at start time. Asp Ratio=10 Plot time=200 Ave. radius= 5.7374

Latice is 200 x 200 with 5% pores and 2 MCS steps at start time. Asp Ratio=10 Plot time=200 Ave. radius= 6.0826

Anisotropy Discussion

- Growth is limited to lattice neighbor directions causing an artifact.
- Ideas to improve the artifact.
 - Periodically rotate compact through random U(0,π) angles within the borders, and rotate back before display.
 - Need to conserve mass, porosity, & grain size.

Rotation Issues

Nearest site - Does not conserve mass. Interpolation - Loses meaning of grain/pore Rotation by Shear, Rotation by Area Map, etc. - Many algorithms, a lot patented None conserve mass, porosity, grain size, etc.

- Rotate in rings
 - Width of rings is adjustable parameter.
- Thicker rings
 - Less angular distortion
 - More radial distortion

Circle Rotation

- To reduce distortion.
 - Use circular specimen on square lattice.
 - Use ring concept to maintain grain size, porosity, mass, etc. and minimize distortion.

Latice is 80 x 80 with 10% pores and 8 MCS steps at start time. Asp Ratio=10 Plot time=18 Rotation Angle= 0

Circle Rotation

To reduce distortion. Use circular specimen on square lattice. Use ring concept to maintain grain

Latice is 80 x 80 with 10% pores and 8 MCS steps at start time.

Latice is 80 x 80 with 10% pores and 8 MCS steps at start time Asp Ratio=10 Plot time=18 Rotation Angle= 0.087266

Algorithm Ring Analysis

Ring Width is the main parameter.
 – Distortion: Angular, Radial.
 – Standard Deviation of Error.

Conclusions

Potts model incorporating mechanisms of sintering with anisotropy achieved.

- Novel approach to solving lattice associated artifact problem.
- New Algorithm for implementing rotation concept.

May provide better understanding of anisotropic affects for many models.

Further Work

- Incorporate anisotropic grain boundary binding energies based on misorientation angle.
- Quantitative analysis to confirm response consistent with other models and physical experiments.
- Analyze random oriented fine grains with aligned large grains for better understanding of Templated Grain Growth

Thank You!

Questions?

Analytical Approach

Soap Froth Models – von Neumann (1952) $\frac{dA_n}{dt} = \frac{\pi\gamma m}{3}(n-6)$

Mean Field Theories Von Neumann Mullins equation

 Hillert (1965) "grains drifting"
 Louat (1974) "grains diffusing"

 Overall:

 Difficult to solve
 Don't capture local grain properties

Computer Simulation

Two categories
 Deterministic

 Vornoi (Vertex) Methods
 Fullman (1952)

Cocks & Gill (1996)

GILL and COCKS: GRAIN GROWTH--II

Computer Simulation:

Stochastic – Potts Monte Car – Phase Field Lusk (1999) Kazaryan (2001) -VMC Cleri (2000) Moldovan (2002)

Lusk: 1D order parameter motion

Step 1: Initialize the Lattice

Step 2: Grain Growth

- Select a site
- Randomly select a new grain state (spin) from neighboring spins.
- Calculate ΔE for changing the spin.
- Generate random U(0,1) and $d^{\Delta E/kT}$
- If rand $\leq e^{-\Delta E/kT}$ change to new spin

Step 3: Pore Migration

- Select a pore site with an adjacent grain
- Randomly select a new grain state (spin) from neighboring spins.
- Calculate for changing the grain site to a pore and the pore site to a grain with the new selected spin.
- Generate and m U(0,1) and
 If rand <= change to new

Step 4: Vacancy Annihilation (1)

 Theory from DeHoff (1989)
 Compute Grain Boundary Length
 Compute # attempts
 t L_{gb}
 Randomly select a pore site.
 If it is a vacancy, annihilate it

- Step 4: Vacancy Annihilation
 (2)
 - Compute centroid of largest adjacent grain
 - Exchange farthest grain in
 - compact a – Vacancy tł become s grain
 - Grain
 become
 s pore

