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Major questions we aim to answer

1. How were the heavy elements from iron to uranium made?
2. Do neutrinos have mass?

“Connecting Quarks with the Cosmos: 11 Science Questions 
for the New Century”, NAS/NRC Committee on Physics of the
Universe, 2003 Report

How - adopt available ab initio theory to assure predictive power 
with results based on QCD and controlled uncertainties

Present stage - method validation in light nuclei, novel physics
Next decade - describe heavy nuclei and reactions, novel physics

Really big dream - computational nuclear physics achieves
a precision competitive with experimental uncertainties

=> Coordination/balance between experiment and computation
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QCD
Theory of strong interactions

χEFT
Chiral Effective Field Theory

Big Bang 
Nucleosynthesis

& Stellar Reactions
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The 3-Fold Challenge = Computationally Hard

• Multiple scales - keV to GeV (collective modes, EOS, SRC’s)
• Strong interaction - SRC’s, renormalization, NN+NNN
• Self-bound quantum N-body systems - preserve all underlying symmetries

DOE Major Facilities with related experimental programs
            Facility for Rare Isotope Beams (FRIB)
            Thomas Jefferson Lab (TJ Lab)
             Neutrino detector facilities (several)

Nuclear Physics interfaces with other fields - input/benefits
 Math/Comp Sci
 Particle physics
 Astrophysics/Cosmology
 Many-body physics



List of Priority Research Directions
• Physics of extreme neutron-rich nuclei and matter
• Microscopic description of nuclear fission
• Nuclei as neutrino physics laboratories
• Reactions that made us - triple α  process and 12C(α,γ)16O

2α(α,γ)12C 12C(α,γ)16O

DOE Workshop on Forefront Questions in Nuclear Science 
and the Role of High Performance Computing, 

Gaithersburg, MD, January 26-28, 2009
Nuclear Structure and Nuclear Reactions



Nuclei as Neutrino Physics Laboratories

Scientific and computational challenges

• Develop extreme scale nuclear structure
  codes; estimate uncertainties with
  competing methods.

• Create techniques for ν-reactions
  relevant to oscillation experiments. 

• Develop effective interactions and weak
  currents based upon fundamental theory 
  and experiments.

• Diagonalize matrices of dimension 1012-13

• Dependence of 0ν ββ-decay nuclear 
  lifetimes on neutrino mass with 
  theoretical uncertainty to 30-50%. 

• ν-nucleus cross sections to 20%. 

• Fault-tolerant, load-balanced highly
  scalable sparse eigensolver; load
  balancing for Monte Carlo simulations. 

• Interpret experiments to explain the 
  nature of the neutrinos and their masses.

• Calculate rates of nuclear reactions that
  drive stars and stellar explosions.

Summary of research direction

Expected Scientific and Computational Outcomes Potential impact on Nuclear Science

DOE Workshop on Forefront Questions in Nuclear Science 
and the Role of High Performance Computing, 

Gaithersburg, MD, January 26-28, 2009
Nuclear Structure and Nuclear Reactions



  



  

The Nuclear Many-Body Problem

The many-body Schroedinger equation for bound states consists
of 2(  ) coupled second-order differential equations in 3A coordinates

using strong (NN & NNN) and electromagnetic interactions.

Ab initio approaches projected for exascale machines

Stochastic approach in coordinate space
Greens Function Monte Carlo (GFMC) 

Hamiltonian matrix in basis function space
No Core Shell Model (NCSM)

Cluster hierarchy in basis function space
Coupled Cluster (CC)

Comments
All work to preserve and exploit symmetries

Extensions of each to scattering/reactions are well-underway
They have different advantages and limitations
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Example of a multi-code environment



  



  

ab initio No-Core Shell Model (NCSM)
Problem Statement

 

H = Trel + VNN + V3N +

H Yi = E i Yi

Yi = An
i

n= 0
￥ F n

Diagonalize  F m H F n{ }

Employ eigenvectors to calculate experimental observables

Solve eigenvalue problem in large enough basis to converge

 

Transition Rate  i k( )    Yk
 �O Yi

2

Issues limiting the physics
 Strong interaction complexity (e.g. NN vs NN + NNN)
 Size & character of basis space needed for convergence
 Eigensolver algorithm improvements
 Memory available to store matrix and vectors



  

• Adopt a realistic NN (and 3N) interaction & renormalize as needed - retain induced 
many-body interactions

• Adopt the 3-D Harmonic Oscillator (HO) for the single-nucleon basis states, α, β,…
• Evaluate the nuclear Hamiltonian, H,  in basis space of HO (Slater) determinants 

(manages the bookkeepping of anti-symmetrization)

• Diagonalize resulting sparse many-body H in this “m-scheme” where

• Evaluate observables and compare with experiment

Comments:
•  Straightforward but computationally demanding => new algorithms/computers
•  Requires convergence assessments and extrapolation tools
•  Achievable for nuclei up to A=16 (40) today with leadership-class computers

 

Φn = [aa
+ aV

+]n 0

 

n =1,2,...,1010  or more!

What are the basic elements to solving the problem?
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Box BC's 

  k+ =
p

L
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  ­ L x­ L
  Shown is :  0 x - L
  Reflection antisym.
  j =1, n = 0, m = 3



  



  

Lanczos Diagonalization

Recursive determination of additional terms:

implies

H

    
    
    
    
    

 

 

 
 
 
 

 

 

 
 
 
 

H Ψα = α Ψα

χ = 

 = χ  χ

 = 

bn+ χ+ =  χ −  χ −  χ−

=  “pivot vector”



  

Lanczos diagonalization develops a dynamical basis in which
the full H is tri­diagonal.  

In practice, one diagonalizes this (truncated) tri­diagonal H
after each iteration and compares the lowest eigenvalues
until a desired precision is reached.

Even for very large many­Fermion problems, e.g. D = 109, 
30­50 iterations can give a ground state energy accurate 
to one part in a million using 32­bit accuracy.



  

Efficient Algorithm for Lanczos Diagonalization

χn- 1 , hn +1 , hn+1
' ,and c n +1

Only two vectors must be stored as we can use same storage for:

ηn+1 = H c n - bn c n- 1

an = h n+1 c n

h n+1
' = hn+1 - an c n

bn+1 = [ h n+1
' hn+1

' ]1/ 2

c n+1 =
h n+1

'

bn+1



  

Possible difficulties

• Loss of orthogonality leading to spurious and 
   duplicate eigenvalues => reorthogonalize
• slower convergence of degenerate or near­degenerate states
• sensitivity of convergence rate to initial pivot vector



  

7 states



  



  



  



  



  



  

2.0  1011

2 EB

200 TB
petascale limit

Need
Is 4N impt?

Need
increased
memory

200 PB
exascale limit

Need
Improved I/O



  



  



  



  



  



  



  

Gains from investments in research 
well-matched with Moore’s gains  in computer speed

Thanks to David P. Landau

Improvement Factor 
Ising Model Simulations 

Year



  

Conclusions and Outlook

Theory + Leadership Class Computers 
||

Discovery potential

Federal support increasing dramatically
||

Career opportunities
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For your attention
To colleagues and collaborators


