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PSD Detection

0.2 0.4 0.6 0.8 1
10

-8

10
-6

10
-4

10
-2

10
0

f

P
S

D
(f

)

Figure: Without External Signal
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Figure: With External Signal
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Figure: Complex Systems

Definition

“A complex system is a system

composed of interconnected parts

that as a whole exhibit one or more

properties (behavior among the

possible properties) not obvious

from the properties of the

individual parts.” (Wikipedia).
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General Approach

A general approach for the analysis of complex systems has

been to derive a detailed model of the individual parts, connect

the parts and note that the system contains some sort of

symmetry, then attempt to exploit this symmetry in order to

simplify numerical computations.
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Model Equations

τ ẋi = axi − bx3
i + λ(xi − xi+1) + ε, i = 1, 2, . . . , N mod N
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Figure: Bifurcation Diagram
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Critical Coupling

Assuming ε is a dc

electric-field.
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Model Equations

τ ẋi = axi − bx3
i + λ(xi − xi+1) + ε sin(ωt).

Asymptotic Analysis via Airy Functions
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Hardware Dynamics

CLV̇i = −gVi + Is tanh[csVi ] + Ic tanh[ccVi−1] − ε
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One-Parameter Bifurcation Diagrams
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Figure: Theory

 

Figure: Experiment
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Two-Parameter Bifurcation Diagrams
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Time-Series Oscillations
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Frequency and RTD Response

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

ε

Fre
qu

en
cy

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

ε

RT
D

Figure: Theory

350

300

250

200

150

100

50

R
T

D
(µs

)

5004003002001000
Isig  (nA)

1600

1400

1200

1000

800

F
re

q
u

e
n

cy
(H

z)

5004003002001000
Isig  (nA)

Figure: Experiment

Palacios Symmetry in Complex Systems



Best Sensory Systems

Complex Systems

Electric-Field Sensors

CINS

Acknowledgements

Modeling

General Approach

Symmetry Approach

Outline

1 Best Sensory Systems

2 Complex Systems

3 Electric-Field Sensors

Theoretical Analysis

Hardware Realization

Validation

4 Coupled Inertial Navigation System

Modeling

General Approach

Symmetry Approach

Palacios Symmetry in Complex Systems



Best Sensory Systems

Complex Systems

Electric-Field Sensors

CINS

Acknowledgements

Modeling

General Approach

Symmetry Approach

Equations of Motion

mẍj + cẋj + κxj + µx3
j = Ad sin wd t + 2mΩz ẏj +

∑

k→j

cjkh(xj , xk )

mÿj + cẏj + κyj + µy3
j = −2mΩzẋj ,
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Van der Pol Transformations

u1j = xj cos wτ − ẋj/w sin wτ ,
u2j = −xj sin wτ − ẋj/w cos wτ,
u3j = yj cos wτ − ẏj/w sin wτ ,
u4j = −yj sin wτ − ẏj/w cos wτ

where w0 =
√

k/m and τ = w0t .

Averaging

du

dτ
= εG(u, τ)

R T
0−→ du

dτ
= εḠ(u)
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Amplitude Equations

Ȧj =
ε

2w

[

−ρAj +
3

4
µ|Aj |2Aj i + wγBj − Ad i − λ(Aj+1 − 2Aj + Aj−1)i

]

Ḃj =
ε

2w

[

−ρBj +
3

4
µ|Bj |2Bj i − wγAj

]

.

where ρ = cw0w + ∆i , ε∆ = w2 − 1, ε = 1/(mw2
0 ).
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Definitions

Symmetry Set of transformations that leave an object

unchanged.

Invariance f : C3 → R is invariant under a group Γ if

f (γx) = f (x), for all γ ∈ Γ.

Equivariance dx
dt = f (x , λ), x ∈ Rn, has Γ-symmetry if

f (γx , λ) = γf (x , λ), for all γ ∈ Γ, where Γ ⊂ O(n).

Isotropy Subgroup The amount of symmetry of a solution x is

given by: Σx = {γ ∈ Γ : γx = x}.

Fixed Subspace Fix(Σ) = {x ∈ Rn : σx = x , ∀σ ∈ Σ}.

Invariance f : Fix(Σ) → Fix(Σ).
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Let

1 z = (zd , zs , Ad) be the state-variable of a single gyroscope,

where zd = A and zs = B.

2 Γ × T 1 be the group of symmetries of the network.

3 T 1 act on C3 in the standard way:

θż = (eiθzd , eiθzs, eiθAd ).
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Theorem

(a) A Hilbert basis for the T 1-invariant polynomials on

C3 is:

u1 = zd z̄d , u2 = zsz̄s, u3 = Ad Ād ,

v1 = zd z̄s, v̄1, v2 = zd Ād , v̄2, v3 = zsĀd , v̄3.

(b) The T 1-equivariant are generated by
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Normal Forms

dz

dt
= (g1(z, Ad ), g2(z, Ad ), 0),

where g1 = p1zd + p2zs + p3Ad , g2 = q1zd + q2zs + q3Ad ,, p′

is

and q′

i s are complex-valued functions of u1, u2, u3, v1, v2, v3.

Network Dynamics

żdj = g1(zdj , zsj , Ad )+ h(zd ,j+1 − zdj , zdj − zd ,j−1)+
h(zs,j+1 − zsj , zsj − zs,j−1)

żsj = g2(zdj , zsj , Ad )+ h(zd ,j+1 − zdj , zdj − zd ,j−1)+
h(zs,j+1 − zsj , zsj − zs,j−1)

Ȧd = 0.

Palacios Symmetry in Complex Systems



Best Sensory Systems

Complex Systems

Electric-Field Sensors

CINS

Acknowledgements

Modeling

General Approach

Symmetry Approach

Global Symmetries

Let γ ∈ Γ. It can be shown that

γ · (z1, . . . , zn) = (zγ−1(1), . . . , zγ−1(n)).

Combining local and global symmetries:

(ζ, eiθ)(z1, . . . , zn) = (eiθzζ(1), . . . , eiθzζ(n)), where ζ ∈ Dn.
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Predictions

Isotropy subgroup Σ Fixed-Point Subspace
Solution

Dm(k) = 〈{σk , k}〉 In Phase

Dm(kσ) = 〈{σk , kσ}〉 In Phase

Zm = 〈{σk}〉 In Phase

Dm(+−) = 〈{σk−1k , 1), (kσ,−1)}〉 for m even Standing Wave

Dm(−−) = 〈{σk−1k , 1), (kσ,−1)}〉 for k even Standing Wave

Zm(p) = 〈{σk , wpk}〉 where p ∈ {1, . . . , [m/2]} Traveling Wave

Table: Predictions for a Dn-symmetric CINS network.
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Lattice of ISotropy Subgroups
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Figure: Lattice of isotropy groups and patterns of oscillation for a

CINS ring with Dn-symmetry, case study n = 3.
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