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Best Sensory Systems

Electrosensors: Sharks

sensing cll reacts when an extemal elctrc feld prodiuc:
s smal electic potentil across ts membrane, leading
channels to llow positivelycharged calcium ons torush
in.The nflux of positive charge causes thecol o release
neurolransmittrs at synapses, of contact points, i
nerves 0 the brin, stimulatng them to fie. The firing ate
indicates thestrength and polariy of the externalfied,and
the fleld'slocation eltive to the shark s thought tobe
determined by the positionsof the activated pores on s
body. The cels retrn tothekoriginal eectrical state after-
ward by opening  second type of membrans channelthat

MAKO SHARK
pemits postvely charged potassium fons toexit.

Potassiumions

Calciumions
(6s) low out

(cars)flowin

Sharks and related species sense
extremely weak electric felds gener-
ated by other animals i seawater thanks
tohundreds or even thousandsof specialized
ctos in thersnouts called ampullae of
Lotenzini (o). The fieds conduct lectricity in well-
nsulated, gelfled canals (b) that extend from the skin
pores o the bulb-shaped ampulae () ned with a single layer poe. ),
of sensing ols(d). Thosecolls whichrespond o ery sight Lorenzini Nerve
i External pore Supportcoll
Gelfiled canal inskin Sensingcell  Synapse

nearby nerves, which nform the brain of the fiekd'spresence.
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Best Sensory Systems

PSD Detection
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Best Sensory Systems

Residence Times Detection

Sum signal
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Complex Systems

4

“A complex system is a system

r 3

composed of interconnected parts

that as a whole exhibit one or more

properties (behavior among the
possible properties) not obvious
from the properties of the
individual parts.” (Wikipedia).
Figure: Complex Systems
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Complex Systems

General Approach

A general approach for the analysis of complex systems has
been to derive a detailed model of the individual parts, connect
the parts and note that the system contains some sort of
symmetry, then attempt to exploit this symmetry in order to
simplify numerical computations.
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Electric-Field Sensors

Theoretical Analysis
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Theoretical Analysis
Hardware Realization
Validation

One-Parameter Bifurcation Analysis

Electric-Field Sensors

max,min x

Figure: Bifurcation Diagram

Figure: Phase-Space
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Electric-Field Sensors

Theoretical Analysis

Hardware Realization

Validation
Two-Parameter Bifurcation Analysis

Critical Coupling
Assuming ¢ is a dc
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Theoretical Analysis
Electric-Field Sensors Hardware Realization
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Time-Periodic Target Signal

Model Equations

TX; = axj — bx? + A(X; — Xiy1) + e sin(wt).

80
_ Fo—)\e
e = HApar e
_ 2(F0—>\e)(1+)\f)+k13(1—Af)Q2:l: w3
fc = 2(THAN)2
VIER2(8(Fo—re) 1A )—K3Q2(1-A))
2(1+AF)2 o
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Electric-Field Sensors

Theoretical Analysis

Hardware Realization
Hardware Dynamics

Validation

C.V; = —gV;+ Istanh[cs V] + I, tanh[c; Vi 4] — ¢
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Theoretical Analysis
Electric-Field Sensors Hardware Realization

Validation

One-Parameter Bifurcation Diagrams

Limit Cycle
b TN

Steady State

max,min x

Figure: Theory

Figure: Experiment
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Theoretical Analysis
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Two-Parameter Bifurcation Diagrams
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Time-Series Oscillations

Oscillations in the coupled system
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Frequency and RTD Response

Frequency

Figure: Theory
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Modeling
CINS
Outline

General Approach

Symmetry Approach

Q Coupled Inertial Navigation System
@ Modeling
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Modeling
CINS

General Approach
Symmetry Approach

Equations of Motion

mX; + cXj + KX} + px°
my; + cyj + KYj + ny?

Agsin Wat +2mQy; + > cich(X;, Xk)
k—j
—2mSQ;X;,
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Modeling
General Approach
CINS
Ouitline

Symmetry Approach

Q Coupled Inertial Navigation System

@ General Approach
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Modeling
General Approach
CINS Symmetry Approach

Van der Pol Transformations

Uyj = XjCOSWT — X;/wsinwr,

Upj = —xjsinwr —_x,-/wgos wr,

Ugj = J;COSWT —y;/wsinwr,

Usj = —yjsinwr — y;/wcoswr
where wp = \/k/m and 7 = wyt.

Averaging

.
Y Gy Y g

dr
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Modeling
General Approach
CINS Symmetry Approach

Amplitude Equations

: € 3 : : .
A= [—ij + Zu|Aj|2Aj/ + wyBj — Agi — N(Aj11 — 2A; + Aj_q)i
. £

5= 5w

3 ,
[—ij - Zu\Bj\sz/ — wAA| .

where p = cwow + Af, eA = w? — 1, e = 1/(mwg).
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@ Symmetry Approach
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Modeling
CINS

General Approach
Symmetry Approach

Definitions

Symmetry Set of transformations that leave an object
unchanged.

y
=} F = = DAy
Palacios Symmetry in Complex Systems



Modeling
CINS

General Approach

Symmetry Approach
Definitions |
Symmetry Set of transformations that leave an object
unchanged.

Invariance f: C®* — Ris invariant under a group T if
f(yx) = f(x), forall y € T.
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General Approach

Symmetry Approach
Definitions |
Symmetry Set of transformations that leave an object
unchanged.

Invariance f: C®* — Ris invariant under a group T if
Equivariance

f(yx) = f(x), forall y € T.
de
f

= f(x,\), x € R", has I'-symmetry if
f(yx,\) =~f(x,\), forally € T, where I € O(n).
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Modeling
CINS

General Approach

Symmetry Approach
Definitions |
Symmetry Set of transformations that leave an object
unchanged.

Invariance f: C®* — Ris invariant under a group T if
Equivariance

f(yx) = f(x), forall y € T.
o
f

= f(x,\), x € R", has I'-symmetry if
f(yx,\) =~f(x,\), forally € T, where I € O(n).
Isotropy Subgroup The amount of symmetry of a solution x is

givenby: Yy ={y el :vx=x}.
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Modeling
General Approach
CINS Symmetry Approach

Definitions |
Symmetry Set of transformations that leave an object
unchanged.

Invariance f: C®* — Ris invariant under a group T if
f(yx) = f(x), forall y € T.
Equivariance %

= f(x,\), x € R", has I'-symmetry if

f(yx,\) =~f(x,\), forally € T, where I € O(n).
Isotropy Subgroup The amount of symmetry of a solution x is

givenby: Yy ={y el :vx=x}.
Fixed Subspace Fix(X) ={xe€ R" :ox=x, Vo € L }.
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Modeling

General Approach
CINS Symmetry Approach

Symmetry Set of transformations that leave an object
unchanged.

Invariance f: C®* — Ris invariant under a group T if
f(yx) = f(x), forall y € T.
Equivariance %

= f(x,\), x € R", has I'-symmetry if

f(yx,\) =~f(x,\), forally € T, where I € O(n).

Isotropy Subgroup The amount of symmetry of a solution x is
givenby: Yy ={y el :vx=x}.

Fixed Subspace Fix(X) ={xe€ R" :ox=x, Vo € L }.
Invariance f: Fix(X) — Fix(X).
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Modeling
CINS

General Approach
Symmetry Approach

Let

@ z=(zy4,2s,Ay) be the state-variable of a single gyroscope,
where zy; = Aand z; = B

© I x T be the group of symmetries of the network.

© T acton C? in the standard way:

0z = (ezy4,e"z5, €% Ay).
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Modeling
General Approach
CINS Symmetry Approach

Theorem

(a) A Hilbert basis for the T'-invariant polynomials on
Cis: B
Ut = ZgZg, U2 = ZsZs, Uz = AgAdg,
Vi = Z9Zs, V1, Vo =ZgAg, Vo, V3= ZsAq4, Va.
(b) The T'-equivariant are generated by

HEHAHAHAAL]
BRHEH]
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Modeling
CINS

General Approach

Symmetry Approach

oz _

dt (g1(Z,Ad),QZ(Z,Ad),O),

where gy = p124 + P22s + P3Ad, 92 = G124 + Q2Zs + G3Aq,, PjS
Network Dynamics

and g;s are complex-valued functions of uy, up, Uz, v4, Vs, V.

2gp = 91(2qj, Zsjs Ad)+  M(Zd j+1 — Zoj, Zoj — Zd,j—1)+
—0.

h(Zs j41 — Zsj, Zsj — Zs,j—1)
o = = = A

h(Zsj1 = Zsj, ) — Zs,j-1
Zsj = 92(2qj, Zsjs Ad)+  N(Zaj1 — Zdj, Zdj — Zd j—1)+
Ay =




Modeling

General Approach
CINS

Symmetry Approach

Global Symmetries
Let v € I'. It can be shown that

v (Z1,...,2p) = (27_1(1),...,2 1
Combining local and global symmetries:

=1 (m))-

(¢ € (z,...,20) = (°2y1y,...,€°2), where ¢ € D,
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Modeling
General Approach

CINS Symmetry Approach

Predictions

Isotropy subgroup > Fixed-Point Subspace
Solution
D (k) = ({o¥, k}) In Phase
D (ko) = ({ok, kal) In Phase
= {o*}) In Phase
Dm( —) = ({c"" Tk, 1), (ko, —1)}) for m even Standing Wave
Din(——) = {o* "k, 1), (ka,—1)}) for k even Standing Wave
Z,(p) = ({oF, wP}) where pc {1,...,[m/2]} Traveling Wave

Table: Predictions for a D,-symmetric CINS network
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Modeling

General Approach
CINS

Lattice of ISotropy Subgroups
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Figure: Lattice of isotropy groups and patterns of oscillation for a
CINS ring with D,-symmetry, case study n = 3.
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General Approach

Symmetry Approach
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