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NMDA RECEPTORS AND THE COMPUTATIONAL 
PRIMITIVES OF NEURONS

• VIEWPOINT: ‘Electrical Engineering’ (reflecting my 
background)

• MOTIVATION: Interest in computational neuroscience and 
neuromorphic systems

• TOPIC: Characteristics of neural behavior with implications 
for signal processing capabilities

 The characteristics I describe (e.g., bistability) may arise from network 
interactions, but I focus on the primitives associated with individual 
neurons)

Other people who have looked at this:

M. Lazarewicz (U. Penn.) et al. ( -> Neurocomputing 69: 1025-1029, 2006 )

• Preliminary analysis of NMDA-dependent voltage bistability in dendritic 
compartments

J. Schiller (Technion) et al. 

• Experimental evaluation of bistability in mammalian cortical neurons
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Weighted sum approximation 
to Goldman-Huxley-Katz 

Equation:

Potential of inside of neuron with 
respect to outside:

Vm = GKEK+GNaENa+GClECl

       GK+GNa+GCl

G => membrane conductance
E => ionic reversal potential
(each specific to ionic species)

Equivalent electrical circuit

ELECTRICAL SIGNALS IN NEURONS

+

- +

- +

-

Membrane Potential   State of Neuron

Typical Vm at rest: -50 to -80 mV 
(varies between cell types!)
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ELECTRICAL SIGNALS / SIGNAL PROCESSING  IN NEURONS

• Excitation => depolarization (membrane 
potential ↑ , e.g., by ↑  GNa)

•Results in neurotransmitter release

• Depolarizing Inhibition (membrane 
potential ↓ , e.g., by ↑  GK)

• Shunting Inhibition => (by ↑ GCl): Little 
change in Vm, but ↓ sensitivity to other ∆G

EK 

-80 mV to  
-100mV

ENa 

+50 mV to 
+80mV

ECl 

-50 mV to  
-80mV

Binding of 
neurotransmitter

Opening of 
ion channels

Release of ‘2nd 
messenger’

Aggregation/ 
interaction of 
signals Generation of 

Action 
Potential

Propagation to 
output site

Ca2+ 
influx

Release of 
neurotransmitter

Diffusion of 
neurotransmitter

Synapse (input )

Synapse (output )

ionotropic

metabotropic
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EK 

-80 mV to  
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+50 mV to 
+80mV

ECl 

-50 mV to  
-80mV

ELECTRICAL SIGNALS / SIGNAL PROCESSING  IN NEURONS

LOOK INITIALLY AT SIMPLE 

SINGLE COMPARTMENT MODEL 

(NEURON = SINGLE ELECTRICAL 

NODE)

A FEW NOTES:
Many important classes of ion channels approximately linear (i.e., ohmic) over 
limited range: membrane leakage conductances, & AMPA, kainate, GABAA 
synaptic receptors;

Note this implies a sublinear relationship between input signal and neuron state!
Vm = GKEK+GNaENa+GClECl

       GK+GNa+GCl

Some channels, however, are significantly non-ohmic under physiological 
conditions.
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Current-voltage relation for NMDA receptor 
channels is nonlinear / nonmonotonic:
Jahr-Stevens* Model for macroscopic I-V dependence:

))v/Vexp(]Mg[c(VGI NmmNMDANMDA −⋅⋅+⋅= +21

)V(F m

• Reversal potential near 0V
• Current magnitudes at negative potentials reduced by magnesium blockade

At:

[Mg2+] = 1.2mM

c = 0.28mM-1

vN = 16mV
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*C. Jahr & C. Stevens, 
Journal of Neuroscience 
10: 3178-3182, 1990 
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Current-voltage relation for an electrical compartment with 
NMDA and ohmic membrane conductances
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Inidicative of 
Bistable regime

Current-voltage relation for an electrical compartment with 
NMDA and ohmic membrane conductances
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Bistability: Capacity of a system to exist in either 
of two stable states when at equilibrium

NOTE: The existence of bistable regimes can profoundly 
affect the behavior of a system when not at equilibrium!

Current balance in a single electrical compartment:

= 0 at equilibrium

(Non-NMDA current) + GNMDA·F(Vm) + C dVm/dt = 0
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0=++− dt/dVC)V(FG)VV(G mmNMDArOmO

Consider NMDA receptor conductance in 
combination with ohmic membrane conductances

GROUP OHMIC CONDUCTANCES TOGETHER:
Compute total, instantaneous ohmic conductance 

and define ‘equivalent reversal potential’:

∑ =≡ n
i iO GG

1 ∑∑ ==≡ n
i i

n
i riirO GVGV

11and

Current balance in an electrical compartment becomes:

= 0 at equilibrium
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(VrO = -100mV; Ohmic conductance increasing)
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(VrO = -100mV; Ohmic conductance increasing)

Current-voltage relation for an electrical compartment with 
NMDA and ohmic membrane conductances
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(GO = 0.12*GNMDA; equivalent reversal potential increasing)

Current-voltage relation for an electrical compartment with 
NMDA and ohmic membrane conductances
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(GO = 0.12*GNMDA; equivalent reversal potential increasing)

Current-voltage relation for an electrical compartment with 
NMDA and ohmic membrane conductances
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(GO = 0.12*GNMDA; equivalent reversal potential increasing)
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Maximum equivalent 
reversal potential permitting 
bistability:  ~  -78mV    (varies 
between -65mV and -80mV for 
putative physiological ‘vN’ values)

NMDA receptors + Ohmic conductances support bistability in a small 
region of parameter space, at membrane potentials below typical 
resting potentials.

cusp bifurcation at
[ Γ  = -1/F(Vi ), VrO = - F(Vi )/F ’(Vi ) ],
where Vi = point of inflection of F(Vm )
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Inward-rectifying potassium (Kir) channels :

• Part of resting potassium conductance

• Evidence is accumulating that GABAB receptors activate Kir channels*

• GABAB = important class of inhibitory synapses

• Neurotransmitter  = γ-aminobutyric acid

• Receptors activate ion channels via ‘second messenger’

‘Control’ curve = Kir 
channel current/voltage  
relation in hippocampal 
neurons

*D. Sodickson & B. Bean, Journal of Neuroscience 16: 6374-6385, 1996

*T. Tabata et al., Journal of Physiology 563.2: 443-457, 2005
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Hand fit with a function:

]d)v/)bV[tanh((vGI GmGKirKir −−⋅=

vG = 25mV

b = VrK – 13.8mV

(VrK = rev. potent. K+

 = -93mV in this case)

d = -0.5
*D. Sodickson & B. Bean, Journal of Neuroscience 16: 6374-6385, 1996

*T. Tabata et al., Journal of Physiology 563.2: 443-457, 2005

)V(H m

Inward-rectifying potassium (Kir) channels :

• Part of resting potassium conductance

• Evidence is accumulating that GABAB receptors activate Kir channels*

• GABAB = important class of inhibitory synapses

• Neurotransmitter  = γ-aminobutyric acid

• Receptors activate ion channels via ‘second messenger’
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INITIAL RESULTS: Region of bistability in an electrical 
compartment with NMDA and Kir conductances

Equivalent Reversal Potential (V)

Γ 
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A
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K
ir

Maximum equivalent 
reversal potential permitting 
bistability:  ~  -58mV 

NMDA receptors + inward-rectifying potassium conductance support 
bistability in a broader region of parameter space, and at membrane 
potentials around typical resting potentials.
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reversal potential permitting 
bistability:  ~  -78mV    (varies 
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putative physiological ‘vN’ values)

NMDA receptors + Ohmic conductances support bistability in a small 
region of parameter space, at membrane potentials below typical 
resting potentials.
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INITIAL RESULTS: Region of bistability in an electrical 
compartment with NMDA and Kir conductances

• Results from here to end obtained for ohmic potassium 

conductances

• Expect similar results to hold (but with broader regions 

of bistability) for nonlinear Kir conductances



CSRC Colloquium   6 FEB 2009

ELECTRICAL SIGNALS / SIGNAL PROCESSING  IN NEURONS

Binding of 
neurotransmitter

Opening of 
ion channels

Release of ‘2nd 
messenger’

Aggregation/ 
interaction of 
signals Generation of 

Action 
Potential

Propagation to 
output site

Ca2+ 
influx

Release of 
neurotransmitter

Diffusion of 
neurotransmitter

Synapse (input )

Synapse (output )

• Inputs to most neurons occur on  tree-
like structures, consisting of dendrites

•(Usually) a neuron receives synaptic 
input from many other cells

•Inputs are aggregated at base of tree 
(usually cell body)

Photo: D. O’Carroll, U. Adelaide
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Bistability in a (cable-like) dendrite:

A dendrite is a structure:

• Not normally isopotential

• Axial current flow / voltage drops affect bistability

[ ]t/Vc)V(Fg)VV(grx/V mmmNMDArOmOam ∂∂++−−=∂∂ 22

rlxmmal V|]V)x/V)(r/R[( =+∂∂ =0 0=∂∂ =Lxm |x/V

Governing equation:

Boundary conditions:

and

gO

VrO

cm

gNMDA (nonlinear)

Rl

Vrl

ra

x
L0

Load due to 
soma and/or 

passive neural 
process

(all per unit length)
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Bistability in a dendrite with terminal load:
When the conductances in the membrane of a dendrite assume 

values compatible with bistability, get monostable – bistable 
bifurcations as its electrical length varies
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Bifurcations at various load resistances; Vrl = -65mV



CSRC Colloquium   6 FEB 2009

Bistable regimes in a cable-like dendrite
(ohmic conductances only)

Load resistance Rl = 0;
Eq. Rev. potential VrO = -100mV

Load resistance Rl = 0;
Eq. Rev. potential VrO = -90mV

Load resistance Rl = Rλ r ;
Eq. Rev. potential VrO = -100mV

Receptor conductances constant 
and uniformly distributed in 
active region

Vrl = -65mV in all cases

Rλ r = characteristic resistance 
associated with ohmic 
conductance (= input resistance 
of semi-infinite cable)6.0
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SO: WHAT IS THE SIGNIFICANCE OF BISTABILITY?

• System in 1 of 2 states, depending upon initial conditions (or 
other inputs) =>

A MECHANISM FOR (SHORT-TERM) MEMORY
•  Engineering example: the SRAM cell

• However, this case not a simple 1- bit storage mechanism:
• states evolve with time

• dendritic output magnitude depends on strength of activation

• Important conclusion: individual dendrites may be a locus of 
memory

NMDA receptors have been implicated in ‘working memory’ in 
neuropsychology* 

*C. Adler et al., Biological Psychiatry 43: 811–816, 1998

*Wang, X.J., Journal of Neuroscience 19: 9587–9603, 1999 
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Dynamics & Non-Equilibrium States:

• Neurons are rarely in equilibrium!

• Synaptic receptors / channels have dynamics (kinetics)

•NMDA and GABAB kinetics ‘slow’ relative to membrane time 
constant, BUT

• Their activations are never static!

IN THE FOLLOWING:

Used the simple kinetic models (impulse response functions) 
of Destexhe et al.*)

Assumed inputs are impulsive (arrival of action potentials 
presynaptically)

*A. Destexhe et al., Fast kinetic models for simulating AMPA, NMDA, 
GABAA, and GABAB receptors, in The Neurobiology of Computation, 

Bower, ed., Kluwer Academic Press, 1995 
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Dynamics & Non-Equilibrium States:
When bistable regimes are evoked, subtle differences in:

Timing …

(Kinetic channel 
models of 
Destexhe et al.)
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… and other inputs …
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Dynamics, cont’:
Fast synaptic inputs (AMPA, GABAA) capable of triggering 

transitions when in a bistable regime
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Steady-state NMDA and 
ohmic K+ channel 
conductance;

Impulsive AMPA / 
GABAA inputs;

Peak elicited AMPA / 
GABAA conductance is 
parameter
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AMPLIFICATION:
Even outside a bistable 
regime, coactivation of NMDA 
and inhibitory receptors can 
enhance gain

Current delivered from dendrite to 
‘somatic load’ as function of gNMDA/gO 
(length as parameter)

Current gain (in response to uniformly 
distributed, incremental test current)

SO WHAT IS THE SIGNIFICANCE 
OF AMPLIFICATION?

A mechanism for nonlinear 
facilitation…
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Take-Home Points  Discussion / Conclusions:

• NMDA receptor conductance (+ other conductances) => 
bistability  & amplification in neurons / dendrites

• Bistable regimes also relevant to nonequilibrium conditions

• Amplification can occur outside of bistable regimes

• Robust bistability: requires additional conductance with 
hyperpolarizing reversal potential (e.g., to K+)

• Coactivation of GABAB input a likely mechanism for dynamical control

• Individual dendrites can be bistable and in different states

• Possible computational roles are significant
• Short-term memory

• Functions requiring memory: spatiotemporal correlation

• Parametric amplification
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_+

DELAYS
(LOW-PASS FILTERS)

INPUT SIGNALS FROM EARLY STAGES OF VISION

CORRELATORS

OUTPUT

τ τ

How Is Visual Motion 
Detection Achieved By 
Insects?

Primitive functional unit:
Hassenstein-Reichardt,
or correlational elementary 
motion detector (EMD) model

Could superlinear interaction 
(correlation) be subserved by 
bistable/amplifying properties 
of NMDA synapses?

VISUAL MOTION (OPTIC FLOW) MUST BE INFERRED 
FROM SPATIOTEMPORAL PATTERNS OF LUMINANCE


