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High-throughput approaches in basic science

• Transcriptomics

• Proteomics

• Metabolomics

• Microarrays

• Forerunners (a partial list):

- slot/dot blots

- differential display

- macro arrays

-Subtractive hybridization and cloning

…and alternatives:

- TOGA (Total Gene exp. Analysis)

- SAGE (Serial Analysis of Gene Exp.)

- NEXT GEN SEQ



  

High-throughput approaches in basic science

• Transcriptomics

• Proteomics

• Metabolomics

Complementary and/or alternative to Transcriptomics:
- 2D gel electrophoresis
- multidimensional chromatography coupled with MassSpec 



  

High-throughput approaches in basic science

• Transcriptomics

• Proteomics

• Metabolomics Small-molecule metabolite profiling (the metabolome) 
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45 cDNAs from the small flowering plant 
Arabidopsis thaliana were spotted in duplicate 
on glass slides, hybridized to fluorescently 
labeled cRNAs and laser-scanned. Quantitation 
by two color competitive hybridization: root 
(flurescein) leaf (lissamine).

Proof of principle, scalable, quantitative 

The “modern” microarrays



  

High-throughput strategies were 
implemented relatively recently and 
address a long-standing unmet need 
in the biology tool box. 
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A late arrival



  

• High-density microarrays

• Randomly ordered microarrays

• Slide arrays

• PCR arrays

Main types of microarrays for transcription analysis



  

Affymetrix GeneChip
•High-density microarrays
•In situ DNA synthesis by photolithography and masking
• 11 µm features 
• GeneChip format
• Requires dedicated scanner
• 25mer oligonucleotides probes
• 11-40 different probes per gene

Illumina
•Randomly ordered microarrays
•3-µm silica beads on one of two substrates: fiber optic bundles or planar  
silica slides. Spacing of ~5.7 µm
•BidArray format
•Requires dedicated scanner
•50mer oligonucleotides 
•High redundancy (> 20-fold) but mostly single probe per gene.

Main types of micorarrays for transcription analysis - I



  

Slide format microarrays

Low-density arrays 

Spotted (cDNA)

Agilent 
•60-mer oligonucleotides
•inkjet process
•up to 44k probes about 1 probe/gene

Nimblegen 
•60mer oligonucleotides
•Digital Micromirror Device, UV de-protecting
•40k genes x 8 unique probes per gene; or 24k genes x 3 unique probes x 4plex

PCR arrays 

TaqMan (Abi) and SuperArray (Bioscience)
•Custom and focused arrays e.g: pathways, Ion Channels, Apoptosis, 
Proteases, miRNA et cetera
•35mer probes (ABI) 
•96-384 well format 
•Large number of assays per species available
•Pre-designed  focused panels

Main types of micorarrays for transcription analysis - II



  

• Affymetrix :   pros:       genome coverage in single array
high signal/noise
redundancy of design (multiple probes per gene)
scalable experimental design
large selection of species

cons: more expensive than other platforms (-> low 
sample size); short oligonucleotides

• Illumina : pros:  genome coverage in single array 
very high density and low input size (>50 ng)
high redundancy (mostly single probes >30 folds)
lowest priced of main commercial arrays

cons: limited selection of species (human, mouse, rat)
mostly single probe per gene

 Slide microarrays: pros:      genome coverage in single array 
(Agilent, Nimblegen) highly customizable (design, oligo length) 

cons:       more expensive than Illumina

• Spotted array pros:       customizable, suited for specialized applications
cons:       labor intensive (cDNA library/manufacturing)

limited to competitive hybridization

• PCR arrays:  pros:       well-suited for specialized applications
cons: limited number of probes 

Pros & cons of main microarray types



  

The Affymetrix GeneChip expression analysis process

Each probe contains millions of 
copies of a specific oligonucleotide

Biotinylated RNA 
target from experimental sample

Streptavidin-phycoerythrine
conjugate

Image of hybridized array
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are needed to see this picture.

GeneChip 
arrays



  

Affymetrix expression analysis process 

One probe set is composed of between 11 and 20 PM/MM pairs, as a function of the 
sequence complexity of the gene -  New design uses GC bin design instead of MM



  

Affymetrix expression analysis process 
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Exon arrays contain up to four probes for each putative
exonic region. In addition to probes targeting each exon 
Supported by RefSeq mRNA evidence (core probes), 
Exon arrays also have probes that target exons supported 
solely by expressed sequence tag evidence (extended probes) 
or by purely computational predictions (full probes).
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Target RNA labelling and hybridization
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Target RNA synthesis  

QuickTime  and a
 decompressor

are needed to see this picture.

QuickTime  and a
 decompressor

are needed to see this picture.

QuickTime  and a
 decompressor

are needed to see this picture.



  

QuickTime  and a
 decompressor

are needed to see this picture.

QuickTime  and a
 decompressor

are needed to see this picture.

To fragment the single-stranded DNA dUTP is 
incorporated in the DNA during the second-
cycle, first-strand reverse transcription 
reaction. This single-stranded DNA sample is 
then treated with a combination of uracil DNA 
glycosylase (UDG) and apurinic/apyrimidinic 
endonuclease 1 (APE 1) that specifically 
recognizes the unnatural dUTP residues and 
breaks the DNA strand.
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 decompressor
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The 96-sample Array Matrix format is 
used in Illumina's DASL Gene 
Expression, Focused Arrays, and 
GoldenGate Genotyping, applications.

The BeadChip format is used in 
Illumina's gene expression arrays, DASL 
Gene Expression, Infinium Genotyping, 
and Focused Arrays applications. 

The ILLUMINA expression analysis process
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The ILLUMINA expression analysis process



  

Microarray Experimental objective

A Mouse microarray experiment examines 45,000 probe sets, 
representing 39,0000 transcripts including 34,000 genes and other 
transcripts.

Question: Which genes are the truly differentially expressed genes?

Using multiple analysis strategies helps to identify
the most robust changes in gene expression and
to compensate for the biases that affect each strategy.



  

Analysis Worflow
I. Image processing: determination of signal of a hybridization 

(intensity measurements) for a defined physical location on the 
chip.

II. Scaling/Transformation: to permit comparison of chip values, we 
can multiplying the signals for all genes by a common scale factor 
and/or fit numerical values to the assumptions of a mathematical 
model. The main methods we use are MAS5, dChip and RMA. 

II. Testing: statistical testing for significance is done using parametric 
tests which assume a distribution for the values, e.g. t tests or 
ANOVA, or nonparametric tests, e.g. sign rank test or Kruskal 
Wallis test, which do not assume a distribution of values. Often an 
additional statistical correction for multiple testing is also 
performed, e.g. Bonferroni correction or Tukey test. 



  

Overall Analysis
I. Image processing: determination of signal of a hybridization 

(intensity measurements) for a defined physical location on the 
chip.

II. Scaling/Transformation: to permit comparison of chip values, we 
can multiplying the signals for all genes by a common scale factor 
and/or fit numerical values to the assumptions of a mathematical 
model. The main methods we use are MAS5, dChip and RMA. 

II. Testing: statistical testing for significance is done using parametric 
tests which assume a distribution for the values, e.g. t tests or 
ANOVA, or nonparametric tests, e.g. sign rank test or Kruskal 
Wallis test, which do not assume a distribution of values. Often an 
additional statistical correction for multiple testing is also 
performed, e.g. Bonferroni correction or Tukey test. 



  

I. Image Processing

Assumption: signal intensity ~ mRNA level

•Gridding: locate spots
•Segmentation: classify pixels as signal or background.
•Measurement: for each spot of the array, calculate signal intensity (mean, 
median, mode) background and quality measures.
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Problems with microarray image acquisition

          Optimal                          problematic



  

Overall Analysis
I. Image processing: determination of signal of a hybridization 

(intensity measurements) for a defined physical location on the 
chip.

II. Scaling/Transformation: to permit comparison of chip values, we 
can multiplying the signals for all genes by a common scale factor 
and/or fit numerical values to the assumptions of a mathematical 
model. The main methods we use are MAS5, dChip and RMA. 

II. Testing: statistical testing for significance is done using parametric 
tests which assume a distribution for the values, e.g. t tests or 
ANOVA, or nonparametric tests, e.g. sign rank test or Kruskal 
Wallis test, which do not assume a distribution of values. Often an 
additional statistical correction for multiple testing is also 
performed, e.g. Bonferroni correction or Tukey test. 



  

2 steps: normalization & fitting

•   Normalization removes extraneous signal (noise) that may obscure 
information content but also removes some biological information.

•   Therefore a balance of the negative effect versus the positive effect of 
normalization is required for effective subsequent high level data 
analysis.

•  The data is then fit to an expected distribution, usually a symmetrical 
distribution (normal) often by taking the logarithm of the values.

• The purpose of data transformation is to increase confidence in the 
high level analysis – the results of statistical testing. 

II. Transformation



  

Commonly used methods

MAS5 - MicroArray Suite 
                 provided by Affymetrix as part of the 

             GeneChip Operating System (GCOS)

dChip - DNA Chip Analyzer
                 Li & Wong 2001 PNAS 98:31-6

RMA - Robust Multiarray Averaging
            Irizarry et al. 2003 NAR 31(4):e15 



  

Comparison of Transformation Methods

MAS5 assumes the intensity value is a reflection of the efficiency of hybridization. 
Therefore each value is corrected by the difference between the perfect match and 
mismatch values. The normalization is done by chip through scaling so the 
correction is independent of the experiment (Scaling a chip means multiplying the 
signals intensity measures for all genes by a common scale factor in order to obtain 
the same mean intensity across the experiment). 

RMA assumes quantile normalization across the entire experiment will provide 
more reliable values for comparison, therefore each value is adjusted by assigning 
corrected values by rank. Statistical testing is done by gene so the values 
compared now reflect the distribution across the entire experiment and by gene.

dChip Uses an invariant set normalization method, which chooses a subset of PM 
probes with small within-subset rank difference in the experiment, to serve as the 
basis for fitting a normalization curve. 

The above methods involve addition, subtraction, replacement and taking the log. 
Other statistical methods are considerably more complex and include: Loess, 
Splines, Kernel smoothing, and Support Vector Regression.



  

Comparison of Transformation Methods

Li & Wong 2001 
PNAS 98:31-6 

Irizarry et al. 
2003 NAR 
31(4):e15 

Statistical Algorithm 
Description Document 
www.affymetrix.com 

Source 

Log2 Log2 Antilog Tukey Biweight 
{log2 (PMij - MM*ij)} 

Expression 

PM only PM only PM & MM Probes 

invariant set of 
genes

Quantile Global scalingNormalization 

dChip RMA MAS5 STEP\METHOD 

http://www.affymetrix.com/
http://www.affymetrix.com/
http://www.affymetrix.com/


  

Bias - I

Typical result;
Minimal bias
Intensity level-dependent
variation

Bias: “tendency or preference towards a particular ideology or result that interferes 
with the ability to be impartial, unprejudiced or objective”.



  

Effect of taking the logarithm of a value

Parametric tests (for example t test, ANOVA) assume that the 
data is distributed symmetrically around the mean. Taking the log 
maps the distribution of values closer to a gaussian shape and 
reduces the bias toward the lower intensity values.

               Original values                                              Log2 values



  

Comparison of MAS5, dChip, and RMA 
transformation methods

• The genes have been divided into strata (quarters) based on average 
expression. Each box plot represents the standard deviation of 
genes in one stratum. Note that the multi-chip models (dChip and 
RMA) have less variance than MAS5 on the low-abundance genes 
(which includes most transcription factors and signaling proteins) 
which is important for statistical analysis. 

green = MAS5, black = dChip, blue=  RMA, red = RMA



  

Bias - II

Sanna et al. 2005



  

Bias - II

Sanna et al. 2005
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We compared Affymetrix MAS4 and MAS5,
which use perfect-match-minus-mismatch, 
and DCHIP and RMA, which use perfect-
match-only models. 

To validated the results, approximately 
70 genes were tested by qRT-PCR in 
individual animals from an independent 
replication of the experiment. 

ESC: a       b,c; CSA: a,b        c

All of the genes identified as ESC genes with all four analysis strategies were confirmed by 
RT-PCR as such. Of the genes identified as ESC with at least two analysis strategies, 70% 
were confirmed by RT-PCR. Of these genes, all of the ones that were not confirmed as 
ESC genes proved nevertheless to be CSA genes. Of the genes identified as ESC genes 
with only one of the four analysis strategies, 62% were confirmed as ESC genes, with 50% 
of those remaining belonging to the CSA class.

Using multiple analysis strategies helps to identify
the most robust changes in gene expression and

to compensate for the biases that affect each strategy.

Comparison of Transformation Methods - II

a (LgA)

b (ShA)

c (control)
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Overall Analysis
I. Image processing: determination of signal of a hybridization 

(intensity measurements) for a defined physical location on the 
chip.

II. Scaling/Transformation: to permit comparison of chip values, we 
can multiplying the signals for all genes by a common scale factor 
and/or fit numerical values to the assumptions of a mathematical 
model. The main methods we use are MAS5, dChip and RMA. 

II. Testing: statistical testing for significance is done using parametric 
tests which assume a distribution for the values, e.g. t tests or 
ANOVA, or nonparametric tests, e.g. sign rank test or Kruskal 
Wallis test, which do not assume a distribution of values. Often an 
additional statistical correction for multiple testing is also 
performed, e.g. Bonferroni correction or Tukey test. 



  

III - Statistical testing
t tests: The difference between the means is evaluated in terms of the sample variance 

as a function of the sample size – if the difference between the means is greater 
than the variance, the groups are statistically different. 

ANOVA: Use if 3 or more group means are to be compared. The difference between the 
means is evaluated in terms of the sample variance as a function of the number of 
groups and the sample sizes – if the difference between the means is greater than 
the variance among all the observed values, then at least one mean is statistically 
different. The magnitude of the difference is expressed by the F statistic – a ratio of 
the sum of the  differences between means divided by the sum of the differences 
within observations. Following the ANOVA pairwise comparisons are needed to 
identify the means which differ – these are multiple comparison procedures. 

Multiple comparison procedures: essentially are modified t tests which correct the 
probability distribution for the number of comparisons. The idea is that for the first t 
test, the probability of error is as expected, but for the second test the probability is 
changed. Typically we use Fisher’s LSD, Tukey HSD or Bonferroni each of which 
correct the t test differently.

False Discovery Rate (FDR):  expected fraction of falsely identified genes in a list 
selected solely by statistical means. 

False Positive Rate (FPR):  rate at which unchanged genes appear as false positives 
(as changed genes). 



  

III - Statistical testing

SAM  (Significance  Analysis  of  Microarrays)  is  a  statistical  technique  for 
finding significant genes  in a set of microarray experiments. SAM uses 
repeated permutations of  the data  to determine  if  the expression of any 
genes are significantly related to the group. The cut­off for significance is 
determined by a tuning parameter delta, chosen by the user based on the 
false  positive  rate.  One  can  also  choose  a  fold  change  parameter,  to 
ensure that called genes change at least a pre­specified amount.



  

Sample size determination
Power analysis is the ability of a statistical test to reject the null hypothesis when it is 

false. This is dependent upon the number of measurements, the variability of the 
measurements, and the minimum detectible difference between the groups. If the 
variance is small and the difference between means is large, the minimum 
sample size can be very small. 
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∆/σ = difference/SD
1.4 fold change
α=p<0.05
π=proprotion of changing genes: 5, 10, 50%

small difference between groups large difference between groups



  

Sample size determination ­ II

Pooling of samples. Pooling generally reduces the amount of information.  
However, in microarray studies it may be used to increase power. It is 
only advisable for relatively homogeneous populations. 

e.g., 5 pools of 5 samples afford the same power of a sample size of 20. 
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Illumina

Average normalization is used to rescale intensities across multiple arrays and 
chips. This algorithm is an appropriate choice for experiments that employ a large
number of arrays with differences in overall intensity. For average normalization, 
a scaling factor  is calculated by dividing the average intensity of the virtual array 
by the average intensity for all arrays in a group. A virtual array comprises the 
average values from all the arrays in the reference group and is used to 
determine normalization parameters (linear - reference-based)

Rank invariant normalization, a subset of probes whose rank does not change 
across the experiment are identified and serve to define the normalization 
parameters (linear - quantile).

Cubic spline normalization is implemented to remove curvatures observed in 
scatter plots that arise from nonlinear relationships between samples or groups of
samples when plotted in log space. This method initially divides the intensity 
distribution into a group of quantiles consisting of a similar number of gene 
intensities (nonlinear - quantile).



  

Illumina
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• [Traditional hypotheses: one gene at the time] 

Microarray based transcription analysis:

• Hypothesis formulation 1: Differential gene 
expression

• Hypothesis formulation 2: Pathway analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in gene profiling
(things I learnt writing grants on microarrays)



  

• [Traditional hypothesis: one gene at the time] 

Pro:  hypothesis-driven

Con: hypothesis-driven

Microarray-based:

• Hypothesis formulation 1: Differential gene 
expression

•      Hypothesis formulation 2: Pathway analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in gene profiling



  

• Traditional hypothesis II:

Focused arrays (several genes at the time)

Microarray based:

• Hypothesis formulation 1: Differential gene 
expression

•      Hypothesis formulation 2: Pathway analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in gene profiling



  

• [Traditional hypotheses: one gene at the time] 

Microarray-based:

• Hypothesis formulation 1: Differential gene expression

Pro: a man’s reach exceeds his grasp

Con: differential expression is not a correlate of functional 
significance

• Hypothesis formulation 2: Transcriptional signature - Pathway 
analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in gene profiling



  

Hypothesis formulation 1:
 Differential Gene Expression
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Hypothesis formulation 1:
 Differential Gene Expression
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• [Traditional hypotheses: one gene at the time] 

Microarray-based:

• Hypothesis formulation 1: Differential gene expression

•       Hypothesis formulation 2: Transcriptional signature - 
Pathway analyses:

Pro: bigger picture

Con: partial picture

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in basic science



  

Hypothesis formulation 2:
 Transcriptional signature 
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Molecular Psychiatry (2007) 12, 167–189. doi:10.1038/sj.mp.4001897

Region-specific transcriptional changes following the three antidepressant treatments electro 
convulsive therapy, sleep deprivation and fluoxetine

B Conti1, R Maier2, A M Barr3, M C Morale1, X Lu1, P P Sanna1, G Bilbe2, D Hoyer2 and T Bartfai1. 
1. Molecular and Integrative Neuroscience Department, The Harold L Dorris Neurological Research Institute, The Scripps 

Research Institute, La Jolla, CA, USA 2.Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland

In an attempt to identify common underlying mechanisms for fast- and slow-acting antidepressant modalities, we have examined 
the transcriptional changes in seven different brain regions of the rat brain induced by three clinically effective antidepressant 
treatments: electro convulsive therapy (ECT), sleep deprivation (SD), and fluoxetine (FLX), the most commonly used slow-onset 
antidepressant using the Affymetrix rat genome microarray 230 2.0. The gene chip data were validated using in situ hybridization 
or autoradiography for selected genes. The major findings of the study are:

   1. The transcriptional changes induced by SD, ECT and SSRI display a regionally specific distribution distinct to each treatment.
   2. The fast-onset, short-lived antidepressant treatments ECT and SD evoked transcriptional changes primarily in the 
catecholaminergic system, whereas the slow-onset antidepressant FLX treatment evoked transcriptional changes in the 
serotonergic system.
   3. ECT and SD affect in a similar manner the same brain regions, primarily the locus coeruleus, whereas the effects of FLX were 
primarily in the dorsal raphe and hypothalamus, suggesting that both different regions and pathways account for fast onset but 
short lasting effects as compared to slow-onset but long-lasting effects. However, the similarity between effects of ECT and SD is 
somewhat confounded by the fact that the two treatments appear to regulate a number of transcripts in an opposite manner.
   4. Multiple transcripts (e.g. brain-derived neurotrophic factor (BDNF), serum/glucocorticoid-regulated kinase (Sgk1)), whose 
level was reported to be affected by antidepressants or behavioral manipulations, were also found to be regulated by the 
treatments used in the present study. Several novel findings of transcriptional regulation upon one, two or all three treatments 
were made, for the latter we highlight homer, erg2, HSP27, the proto oncogene ret, sulfotransferase family 1A (Sult1a1), glycerol 
3-phosphate dehydrogenase (GPD3), the orphan receptor G protein-coupled receptor 88 (GPR88) and a large number of 
expressed sequence tags (ESTs).
   5. Transcripts encoding proteins involved in synaptic plasticity in the hippocampus were strongly affected by ECT and SD, but 
not by FLX.

Hypothesis formulation 2:
 Transcriptional signature 



  

Hypothesis formulation 2:
 Pathway analyses

Ingenuity pathway analysis
GeneGo
Pathway studio
GSEA

Create visual representations of differentially 
expressed genes based on current scientific literature



  

Ingenuity Pathway Analysis (IPA), an 
integrated systems biology database broadly 
covering gene regulation, signal transduction, 

protein-protein interactions, cellular 
component, tissue, organ, small molecule and 
relationship with human disease. The IPA is 
structured and context-based and centers 
around the Ingenuity Pathways Knowledge 
Base (IPKB), which is based on manually 

curated scientific literature 
(http://www.ingenuity.com). Uploading a gene 

list or a dataset (genomic and/or proteomic 
experiments) into IPA will return an analysis of 

the molecular interactions, functions, and 
pathways relevant to that list of genes. Genes 

may be entered to explore their known 
interactions as well as the knowledge around 
a biological model. For pathway analyses the 

a significance threshold can be set. 

The main limitation of the IPA is that it is relies 
exclusively on existing published sources. 

Hypothesis 
formulation 2:

 Pathway analyses



  

Gene Set Enrichment Analysis 
(GSEA) 

GSEA is a computational method 
that determines whether an a priori 

defined set of genes shows statistically 
significant, concordant differences 
between two biological states (e.g. 

phenotypes).
 

GSEA software uses gene sets from 
BioCarta, KEGG, GO (Gene Ontology), 

and the curated gene sets from the 
Molecular Signature Database among 

others.
(http://www.broad.mit.

edu/gsea/msigdb/index.jsp)

Hypothesis 
formulation 2:

 Pathway analyses

http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://www.broad.mit.edu/gsea/msigdb/index.jsp


  

• [Traditional hypotheses: one gene at the time] 

Microarray-based:

• Hypothesis formulation 1: Differential gene expression

• Hypothesis formulation 2: Transcriptional signature -Pathway 
analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

Pro: target identifications, pathway analysis

Con: basic hierarchical relationships

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in basic science



  

Microarray-based approaches in basic science 
Hypothesis formulation 3: microarray iterations to refine   

hypothesis
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Microarray-based approaches in basic science 
Hypothesis formulation 3: microarray iterations to refine   

hypothesis
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Best combined with:
• pathway analysis
• gene network analyses
• experimental validation
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Hypothesis formulation 3: microarray iterations to refine hypothesis
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• [Traditional hypotheses: one gene at the time] 

Microarray-based:

• Hypothesis formulation 1: Differential gene 
expression

• Hypothesis formulation 2: Transcriptional signature -
Pathway analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Pro: Hierarchical relationships inferred/predicted

Con: Predictions often not robust

Microarray-based approaches in gene profiling



  

Hypothesis formulation 4: gene regulatory relationships 
(“systems biology”)
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Hypothesis formulation 4: gene regulatory relationships 
(“systems biology”)

Caveat: Most methods have been successful 
only in the study of organisms with relatively 
simple genomes, such as Saccharomyces cerevisiae.

The systems biology process works through iterations of 
high-throughput analyses -> network modeling -> development of 
more specific hypotheses -> hypothesis testing 



  

 
• optimization methods

• regression techniques

• integrative bioinformatics approaches

• statistical/information-theoretic methods 

Reverse engineering strategies

 four broad categories 



  

1. optimization methods: produce many possible networks using a relationship 
model (e.g. binary Boolean where the relationship is scored as present or 
absent, increase or decrease, etc.) and a score is computed using a function 
which essentially sums the number of ‘correct’ relationships to evaluate the 
network. The network with the maximum score is deemed optimal (Gat-Viks 
and Shamir, 2003; Liang et al., 1998)  

 
2. regression techniques: fit the data to a-priori models where the relationship 

among the network components is estimated using a well understood 
mathematical model (linear, exponential, logarithmic) and used to construct the 
network. The constructed network is the best one using the particular model 
(de la Fuente et al., 2002; Gardner et al., 2003; Tegner et al., 2003). 

 

Reverse engineering strategies 



  

Reverse engineering strategies 
 integrative bioinformatics approaches

3. integrative bioinformatics approaches: combine data from a number of 
independent experimental clues and maximize the amount of information 
extracted. This approach requires a series of experiments where a) a set of 
genes of interest is defined (pathway components) for a model system (bacteria, 
yeast) and an initial model is constructed of the relationships of the genes, b) 
then the set of genes is perturbed (by multiple treatments or mutations) with the 
effects being quantified then measured (using protein or RNA expression 
technologies), c) and all proposed models are integrated using the measured 
changes, d) followed by a formulation of hypotheses for the changes not 
predicted by the models, with design of new experiments to test he hypotheses 
and reiteration of these steps until the modeling is ‘complete’ (Ideker et al., 2001). 
 

4. statistical/information-theoretic methods: rely on a variety of measures of 
pairwise gene correlation and information transfer. (Butte and Kohane, 2000) 
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Hypothesis formulation 4: gene regulatory relationships 
(“systems biology”)

ARACNe  (algorithm for the 
reconstruction of accurate cellular 
networks), a new approach for the 
reverse engineering of cellular 
networks from microarray expression 
profiles. ARACNe first identifies 
statistically significant gene-gene co-
regulation  by mutual information, an 
information-theoretic measure of 
relatedness. It then eliminates 
indirect relationships, in which two 
genes are co-regulated through one 
or more intermediaries, by applying 
the ‘data processing inequality’ 
(DPI).  Hence, relationships included 
in the final reconstructed network 
have a high probability of 
representing either direct 
transcriptional regulatory interactions 
or interactions mediated by post-
transcriptional modifiers that are 
undetectable from gene-expression 
profiles.
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Hypothesis formulation 4: gene regulatory relationships 
(“systems biology”)
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Unsupervised hierarchical clustering of a microarray dataset  of CNS samples. 
MPF: medial prefrontal cortex; BLA: basolateral nucleus of the amygdala; 
dlBNST and vBNST: dorsolateral and ventrolateral 
bed nucleus of the stria terminalis; 
CeA: central nucleus of the amygdala; 
cNAc and sNAc: core and shell nucleus accumbens,
VTA: ventral tegmental area. Clustering was performed using GeneSpring GX.



  

•       Drug effects profiling (pharmacogenomics, toxicogenomics)

> personalized medicine, drug classification….

• Disease profiling and progression

• Diagnosis of infectious diseases

• Pathogen discovery

Other microarrays and microarray-based strategies



  

• [Traditional hypotheses: one gene at the time] 

Microarray based transcription analysis:

• Hypothesis formulation 1: Differential gene 
expression

• Hypothesis formulation 2: Pathway analyses

• Hypothesis formulation 3: microarray iterations to 
refine hypothesis

• Hypothesis formulation 4: gene regulatory 
relationships (“systems biology”)

Microarray-based approaches in gene profiling
(things I learnt writing grants on microarrays)



  

•  Tiling Arrays and Promoter arrays

unbiased transcription analysis

methylation analysis

ChIP on Chip

• SNP genotyping arrays

High-throughput variation detection and genotyping using 
microarrays

Beyond transcription analysis:
Other microarrays and microarray-based strategies



  

•  Tiling Arrays and Promoter arrays

unbiased transcription analysis

methylation analysis

ChIP on Chip

Other microarrays and microarray-based strategies
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•  Tiling Arrays and Promoter arrays

unbiased transcription analysis

methylation analysis

ChIP on Chip

Other microarrays and microarray-based strategies
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•  Tiling Arrays and Promoter arrays

unbiased transcription analysis

methylation analysis

ChIP on Chip

Other microarrays and microarray-based strategies
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“Ultra-high-throughput sequencing is emerging as 
an attractive alternative to microarrays. Illumina 
sequencing data are highly replicable, with 
relatively little technical variation, and thus, for 
many purposes, it may suffice to sequence each 
mRNA sample only once (i.e., using one lane). The 
information in a single lane of Illumina sequencing 
data appears comparable to that in a single array 
in enabling identification of differentially expressed 
genes, while allowing for additional analyses such 
as detection of low-expressed genes, alternative 
splice variants, and novel transcripts. “ 

Other applications include genotyping, analysis of 
methylation patterns, and identification of 
transcription factor binding sites 

Are there any alternatives to microarray-based 
strategies for high through-put gene profiling?
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Microarrays

…are a late arrival in the biology toolbox that is rapidly evolving.

…are a versatile tools to address diverse biological questions.

…do better when combined with appropriate computational 
strategies. 

…require specific experimental design strategies.

…are indispensable in the post-genome world (for the time 
being).

Conclusions
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High-throughput gene profiling in neurobiology


