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Motivation

e Need to understand and predict the ocean response to and feedbacks on anthro-
pogenic perturbations.

e Currently, coupling of biogeochemical models to the large-scale ocean physical
circulation.

e Marine ecosystems strongly influenced by physical environmental forcing (storms,
mesoscale turbulence). Both intrinsic and extrinsic variability are important.

Question: “What are the effects of different types of noise on the dynamics and
predictability of aquatic biogeochemical systems?”

Goal: Improve understanding of the relationships between internal (biological) and
external (physically forced) variability.



The NPZD Biogeochemical Model

e Coupled, nonlinear system of first-order differential equations:

dN
— = all=m)gG(P,D)Z = U(I, N)IP +eD
P
C;_t — U(I,N)P = gG(P, D)7 — sP
Z
z _ amgG(P,D)Z — dZ*
dt
dD 2
il (1—a)gG(P,D)Z — gG(P,D)Z + sP + dZ* — eD

Ny = N+P+Z+D

® a, g, s, m, d, and e are model parameters

e [ is light intensity



e U(I, N) is phytoplankton growth: controlled by light (1) and nutrient concen-
tration (V) and losses through grazing (—gG(P, D)Z) and natural mortality
(—sP)

e Zooplankton growth is a function of total food availability, G(P, D) functional
response

e IV, and [ are the primary factors controlling the dynamics.

— Asymptotically stable equilibrium points at low N, and high to moderate 1.
— Oscillates in a limit cycle at low I and high N,

e We chose [ and N, in a range where system is unstable and oscillates in a limit
cycle.

e Details for choices of parameters see Lima, et al. (2002) Intrinsic dynamics and

stability properties of size-structured pelagic ecosystem models. J. Plankton
Res., 24, 533-556.



Nonlinear Models and Nonlinear Autoregressive Processes

e A general class of nonlinear models is from data of observed univariate responses
Y;, dependent on corresponding d-dimensional inputs x;:

Yi= f(z;0) +e

where 6 is a p-dimensional vector of unknown parameters and {e;} is a sequence
of 1.i.d random variables.

e A nonlinear autoregressive process is a univariate time series:

Ty = f(Te—1, Tp—2,. .., T—a;0) + €

where {e;} is a sequence of i.i.d random variables.



Example: Lorenz System

e Coupled, nonlinear system of three first order differential equations:

d

—df = —s(z—y)

d

d—gz = —TZ+TT —Y
d

—dj = xy — bz

for s = 10,7 = 28 and b = 8/3 get famous “butterfly”
e Data: numerically integrate and add noise at every integration time-step.

e State-Space System:
Xy = Fi(Xo1, Y1, Zi ) +exy

i = F(Xi1, Y1, Ziq) + eay
Zy = F3(Xi1,Y1,Zi) +esy



Lorenz Time Series, X (t), Z(t), Y (t)
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Lyapunov Exponents: Measuring Sensitivity to Initial Conditions

Taylor Series expansion to approximate the action of the map F on two initial state
vectors X1,Y;

Xo =Y, = F(Xy) - F(1)
~ DF(X,)(X, - V)

Let J; = DF(X;), the Jacobian matrix of F. By the chain rule for differentiation
Xn_Yn% Jan—1J1<X1_Y1)

Global Lyapunov Exponent:
1
A= lim —In||J,Jp1...J1]]
n—oo n

Local Lyapunov Exponent:

1
An(t) = o In || Jpst—1Jngi—2 - - 4|



Chaos Facts

o If X, is ergodic, stationary and bounded. Then A exists and is independent of
the trajectory (Multiplicative Ergodic Theorem of Oseledec)

e A system with A > 0 has the property of “sensitive dependence on initial condi-
tions” and is chaotic .



Neural Networks

e (lass of nonlinear models:

Y = f(x;0) + e
Yi=FYi1) +e

e The form of the model:
f(x) = Bo+ ;ﬁ:l Bip(x" i + 1)
where p(u) = €"/(1 4 e*)
— Net parameters are estimated by nonlinear least squares.

— Total number of parameters is p = 1 + k(d + 2) where d is dimension of @.

— Complexity of the model chosen by Cross Validation:
LRSS

‘/’c:—
(1-ps)



Neural Network Fits to Noisy Lorenz System, Y (t)
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Confidence Intervals for Paremeters

Based on asymptotics of MLE
Assumptions:

Al X, is stationary and ergodic.

A2 episii.d. N(0,0%).

A3 0 € ©,and O is compact.

A4 F' first, second and third partials of F' exist and are continuous and uniformly

bounded for all § € ©.

Theorem: Under Assumptions A1-A4, there exists a ML estimator 6, of 6 for which
0, % 0 and
IMV2(0)(0, — 6) % N(0,1) as n — oo.

Corollary:
—21n(L(6)/L(B)) % v*(p)



Confidence Intervals for Parameters of Nonlinear Models

e Approximate Confidence set for :

Ay =10 —2m(L(9)/L(9)) < ¢}

e Applications:

Aez{Q:S(«?)SS(é) 1+ F(p,n —p, a)

|

where S(6) is the residual sum of squares and 0 is the least-squares estimate of

0.

n—p

e CI for a functional of the parameters, p(6) is the min and max of the set:

A¢(9) = {QO(@) -0 € Ae}



RSS Surface, S(6)
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The NPZD Biogeochemical Model

e Coupled, nonlinear system of first-order differential equations:

dN
— = all=m)gG(P,D)Z = U(I, N)IP +eD
P
C;_t — U(I,N)P = gG(P, D)7 — sP
Z
z _ amgG(P,D)Z — dZ*
dt
dD 2
il (1—a)gG(P,D)Z — gG(P,D)Z + sP + dZ* — eD

Ny = N+P+Z+D

® a, g, s, m, d, and e are model parameters

e [ is light intensity



e U(I, N) is phytoplankton growth: controlled by light (1) and nutrient concen-
tration (V) and losses through grazing (—gG(P, D)Z) and natural mortality
(—sP)

e Zooplankton growth is a function of total food availability, G(P, D) functional
response

e IV, and [ are the primary factors controlling the dynamics.

— Asymptotically stable equilibrium points at low N, and high to moderate 1.
— Oscillates in a limit cycle at low I and high N,

e We chose [ and N, in a range where system is unstable and oscillates in a limit
cycle.

e Details for choices of parameters see Lima, et al. (2002) Intrinsic dynamics and

stability properties of size-structured pelagic ecosystem models. J. Plankton
Res., 24, 533-556.



Generating Noisy NPZD Data

Data: numerically integrate and add noise at every integration time-step.
Generalized as follows:

Yi=fYie1,n+g1) +&
e Y; is the state vector (N, Py, Z;, Dy)
e 7 is the vector of model parameters
e f is the dynamical operator for the discretized set of equations

e Model noise term g; is assumed to be an independent, Gaussian random variable

2

with mean zero and variance o7

— more realistic to adjust the noise so that it is proportional to the magnitude
of each state variable

e Parameter noise term more realistic if ¢; = ¢g;_1 + ay



Data:

. Noise is added to each state variable (N, P, Z, D). The noise, &; is i.i.d. N(0, 0?)
with o. = 0.002.

. Noise is added to each state variable. The noise is proportional to the magnitude
of the state variable. The noise, is ¢,Y;_1, where ¢; is 1.i.d. N (0,03) with
o. = 0.002.

. Noise is added to the parameter I. The noise, g; = a; (¢ = 0) is i.i.d. N(0,0?)
with o, = 0.025.

. Noise is added to the parameter I. The correlated noise is ¢; = ¢g;_1 + a; with
¢ = 0.7 and a; is i.i.d. N(0,02) with o, = .0178 (0, = 0.025).

. Identical to Data Case 1 except o. = 0.010.
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Case 1: LLESs
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Case 3: LLESs
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P vs. LLE5s dP/dt vs. LLE5s 1/P dP/dt vs. LLES5s
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Short-term Predictability of Phytoplankton (P)

e Case 1 and 2 are similar.

e Quantity 1/P dP/dt is the relative or fractional growth rate.

— Shape of phytoplankton limit cycle outlined by P vs 1/P dP/dt, is similar
across all four data cases.

— Local predictablitiy patterns are similar in that the LLES values are typically
large during the growth phase of the bloom (when 1/P dP/dt is near a
maximum).

e Presence of a secondary period of large LLESs during the collapse of the bloom
is case dependent.



Conclusions and Future Work

e Statistical Framework for Noisy Nonlinear Systems (LEs and LLEs are useful
diagnositc tools!)

e Different types of noise can generate very different dynamics (LLEs can vary
significantly)

e Need to compare noisy systems with ocean field data

e Development of a class of stochastic models is proposed as a “complement” to
the need for more complex deterministic biogeochemical models.

Bailey, B.A., S.C. Doney, and I.D. Lima, Quantifying the effects of dynamical noise
on the predictability of a simple ecosystem model, Environmetrics, 15, 337-355,
2004,
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