Quantifying the Predictability of Noisy Nonlinear Biogeochemical Systems

Barbara A. Bailey
Department of Mathematics and Statistics
San Diego State University

Collaborators: Scott C. Doney and Ivan D. Lima, WHOI

Outline

- The Biogeochemical Model
- Nonlinear Models and Systems
- Global and Local Lyapunov Exponents
- The Noisy Biogeochemical System
- Conclusions and Future Work

Motivation

- Need to understand and predict the ocean response to and feedbacks on anthropogenic perturbations.
- Currently, coupling of biogeochemical models to the large-scale ocean physical circulation.
- Marine ecosystems strongly influenced by physical environmental forcing (storms, mesoscale turbulence). Both intrinsic and extrinsic variability are important.

Question: "What are the effects of different types of noise on the dynamics and predictability of aquatic biogeochemical systems?"

Goal: Improve understanding of the relationships between internal (biological) and external (physically forced) variability.

The NPZD Biogeochemical Model

• Coupled, nonlinear system of first-order differential equations:

$$\frac{dN}{dt} = a(1-m)gG(P,D)Z - U(I,N)IP + eD$$

$$\frac{dP}{dt} = U(I,N)P - gG(P,D)Z - sP$$

$$\frac{dZ}{dt} = amgG(P,D)Z - dZ^{2}$$

$$\frac{dD}{dt} = (1-a)gG(P,D)Z - gG(P,D)Z + sP + dZ^{2} - eD$$

$$N_{0} = N + P + Z + D$$

- \bullet a, g, s, m, d, and e are model parameters
- I is light intensity

- U(I,N) is phytoplankton growth: controlled by light (I) and nutrient concentration (N) and losses through grazing (-gG(P,D)Z) and natural mortality (-sP)
- \bullet Zooplankton growth is a function of total food availability, G(P,D) functional response
- N_o and I are the primary factors controlling the dynamics.
- Asymptotically stable equilibrium points at low N_o and high to moderate I.
 Oscillates in a limit cycle at low I and high N_o .
- We chose I and N_o in a range where system is unstable and oscillates in a limit cycle.
- Details for choices of parameters see Lima, et al. (2002) Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models. *J. Plankton Res.*, 24, 533-556.

Nonlinear Models and Nonlinear Autoregressive Processes

• A general class of nonlinear models is from data of observed univariate responses Y_i , dependent on corresponding d-dimensional inputs \boldsymbol{x}_i :

$$Y_i = f(\boldsymbol{x}_i; \theta) + e_i$$

where θ is a p-dimensional vector of unknown parameters and $\{e_i\}$ is a sequence of i.i.d random variables.

• A nonlinear autoregressive process is a univariate time series:

$$x_t = f(x_{t-1}, x_{t-2}, \dots, x_{t-d}; \theta) + e_t$$

where $\{e_t\}$ is a sequence of i.i.d random variables.

Example: Lorenz System

• Coupled, nonlinear system of three first order differential equations:

$$\frac{dx}{dt} = -s(x - y)$$

$$\frac{dy}{dt} = -xz + rx - y$$

$$\frac{dz}{dt} = xy - bz$$

for s = 10, r = 28 and b = 8/3 get famous "butterfly"

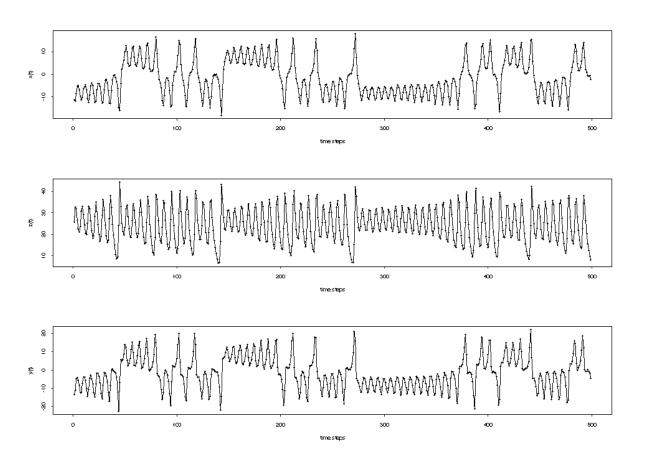
- Data: numerically integrate and add noise at every integration time-step.
- State-Space System:

$$X_{t} = F_{1}(X_{t-1}, Y_{t-1}, Z_{t-1}) + e_{1,t}$$

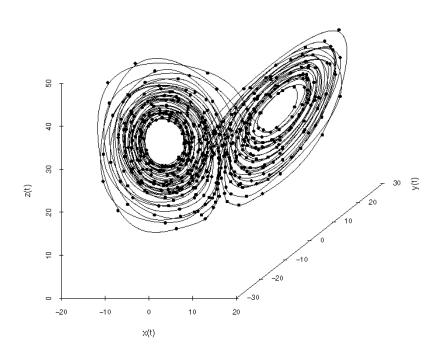
$$Y_{t} = F_{2}(X_{t-1}, Y_{t-1}, Z_{t-1}) + e_{2,t}$$

$$Z_{t} = F_{3}(X_{t-1}, Y_{t-1}, Z_{t-1}) + e_{3,t}$$

Lorenz Time Series, X(t), Z(t), Y(t)



Phase Space for Noisy Lorenz System



Lyapunov Exponents: Measuring Sensitivity to Initial Conditions

Taylor Series expansion to approximate the action of the map F on two initial state vectors X_1, Y_1

$$X_2 - Y_2 = F(X_1) - F(Y_1)$$

 $\approx DF(X_1)(X_1 - Y_1)$

Let $J_t = DF(X_t)$, the Jacobian matrix of F. By the chain rule for differentiation

$$X_n - Y_n \approx J_n \cdot J_{n-1} \cdots J_1 (X_1 - Y_1)$$

Global Lyapunov Exponent:

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \ln \|J_n J_{n-1} \dots J_1\|$$

Local Lyapunov Exponent:

$$\lambda_n(t) = \frac{1}{n} \ln \|J_{n+t-1}J_{n+t-2}\cdots J_t\|$$

Chaos Facts

- If X_t is ergodic, stationary and bounded. Then λ exists and is independent of the trajectory (Multiplicative Ergodic Theorem of Oseledec)
- A system with $\lambda > 0$ has the property of "sensitive dependence on initial conditions" and is *chaotic* .

Neural Networks

• Class of nonlinear models:

$$Y = f(\mathbf{x}; \theta) + e$$
$$Y_t = F(Y_{t-1}) + e_t$$

• The form of the model:

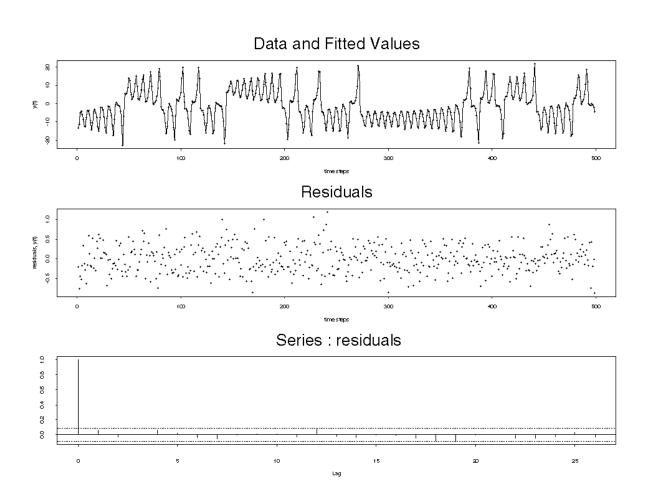
$$f(\boldsymbol{x}) = \beta_0 + \sum_{i=1}^k \beta_i \varphi(\boldsymbol{x}^T \gamma_i + \mu_i)$$

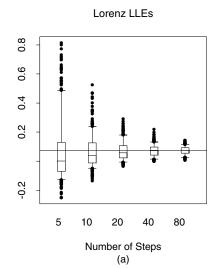
where $\varphi(u) = e^u/(1 + e^u)$

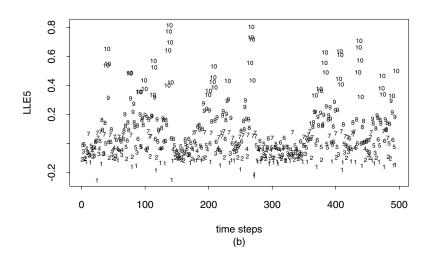
- Net parameters are estimated by nonlinear least squares.
- Total number of parameters is p = 1 + k(d+2) where d is dimension of \boldsymbol{x} .
- Complexity of the model chosen by Cross Validation:

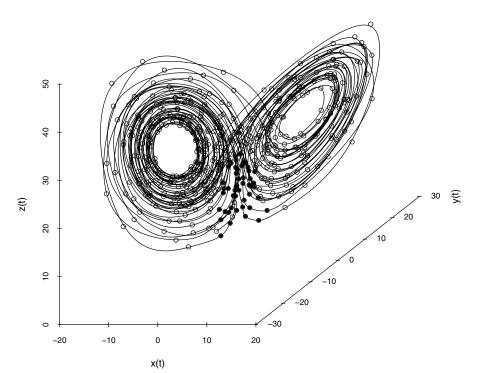
$$V_c = \frac{\frac{1}{n}RSS}{\left(1 - p\frac{c}{n}\right)^2}$$

Neural Network Fits to Noisy Lorenz System, Y(t)









Confidence Intervals for Paremeters

Based on asymptotics of MLE

Assumptions:

A1 X_t is stationary and ergodic.

A2 e_t is *i.i.d.* $N(0, \sigma^2)$.

A3 $\theta \in \Theta$, and Θ is compact.

A4 F, first, second and third partials of F exist and are continuous and uniformly bounded for all $\theta \in \Theta$.

Theorem: Under Assumptions A1-A4, there exists a ML estimator $\hat{\theta}_n$ of θ for which $\hat{\theta}_n \stackrel{a.s.}{\to} \theta$ and $I_n^{1/2}(\theta)(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, 1)$ as $n \to \infty$.

Corollary:

$$-2\ln(L(\theta)/L(\hat{\theta})) \xrightarrow{d} \chi^2(p)$$

Confidence Intervals for Parameters of Nonlinear Models

• Approximate Confidence set for θ :

$$\mathcal{A}_{\theta} = \{\theta : -2ln(L(\theta)/L(\hat{\theta})) \le c\}$$

• Applications:

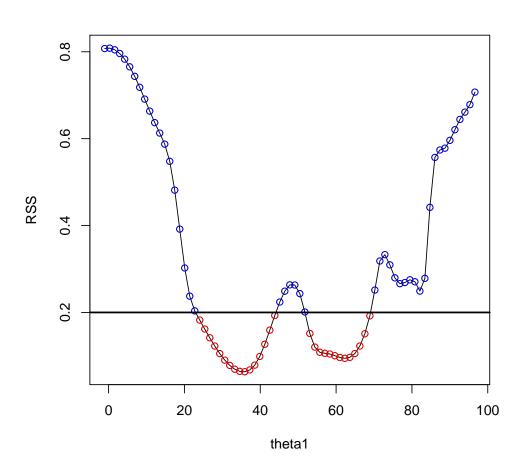
$$\mathcal{A}_{\theta} = \left\{ \theta : S(\theta) \le S(\hat{\theta}) \left[1 + \frac{p}{n-p} F(p, n-p, \alpha) \right] \right\}$$

where $S(\theta)$ is the residual sum of squares and $\hat{\theta}$ is the least-squares estimate of θ .

• CI for a functional of the parameters, $\varphi(\theta)$ is the min and max of the set:

$$\mathcal{A}_{\varphi(\theta)} = \{ \varphi(\theta) : \theta \in \mathcal{A}_{\theta} \}$$

RSS Surface, $S(\theta)$



The NPZD Biogeochemical Model

• Coupled, nonlinear system of first-order differential equations:

$$\frac{dN}{dt} = a(1-m)gG(P,D)Z - U(I,N)IP + eD$$

$$\frac{dP}{dt} = U(I,N)P - gG(P,D)Z - sP$$

$$\frac{dZ}{dt} = amgG(P,D)Z - dZ^{2}$$

$$\frac{dD}{dt} = (1-a)gG(P,D)Z - gG(P,D)Z + sP + dZ^{2} - eD$$

$$N_{0} = N + P + Z + D$$

- \bullet a, g, s, m, d, and e are model parameters
- I is light intensity

- U(I,N) is phytoplankton growth: controlled by light (I) and nutrient concentration (N) and losses through grazing (-gG(P,D)Z) and natural mortality (-sP)
- \bullet Zooplankton growth is a function of total food availability, G(P,D) functional response
- \bullet N_o and I are the primary factors controlling the dynamics.
- Asymptotically stable equilibrium points at low N_o and high to moderate I.
 Oscillates in a limit cycle at low I and high N_o .
- We chose I and N_o in a range where system is unstable and oscillates in a limit cycle.
- Details for choices of parameters see Lima, et al. (2002) Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models. *J. Plankton Res.*, 24, 533-556.

Generating Noisy NPZD Data

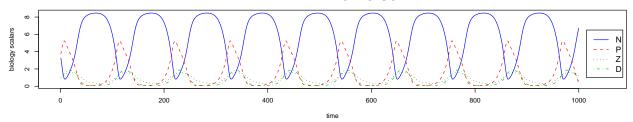
Data: numerically integrate and add noise at every integration time-step. Generalized as follows:

$$Y_t = f(Y_{t-1}, \eta + g_t) + \varepsilon_t$$

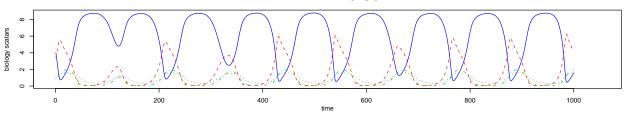
- Y_t is the state vector (N_t, P_t, Z_t, D_t)
- η is the vector of model parameters
- f is the dynamical operator for the discretized set of equations
- Model noise term ε_t is assumed to be an independent, Gaussian random variable with mean zero and variance σ_{ε}^2
 - more realistic to adjust the noise so that it is proportional to the magnitude of each state variable
- Parameter noise term more realistic if $g_t = \phi g_{t-1} + a_t$

Data:

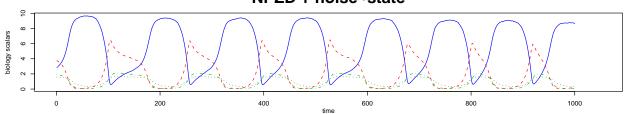
- 1. Noise is added to each state variable (N, P, Z, D). The noise, ε_t is i.i.d. $N(0, \sigma_{\varepsilon}^2)$ with $\sigma_{\varepsilon} = 0.002$.
- 2. Noise is added to each state variable. The noise is proportional to the magnitude of the state variable. The noise, is $\varepsilon_t Y_{t-1}$, where ε_t is i.i.d. $N(0, \sigma_{\varepsilon}^2)$ with $\sigma_{\varepsilon} = 0.002$.
- 3. Noise is added to the parameter I. The noise, $g_t = a_t \ (\phi = 0)$ is i.i.d. $N(0, \sigma_a^2)$ with $\sigma_a = 0.025$.
- 4. Noise is added to the parameter I. The correlated noise is $g_t = \phi g_{t-1} + a_t$ with $\phi = 0.7$ and a_t is i.i.d. $N(0, \sigma_a^2)$ with $\sigma_a = .0178$ ($\sigma_q = 0.025$).
- 5. Identical to Data Case 1 except $\sigma_{\varepsilon} = 0.010$.

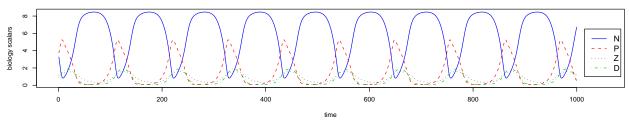


NPZD + noise

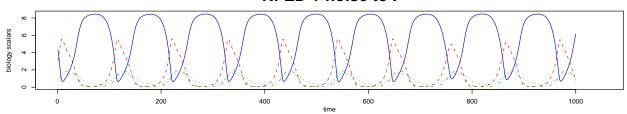


NPZD + noise~state

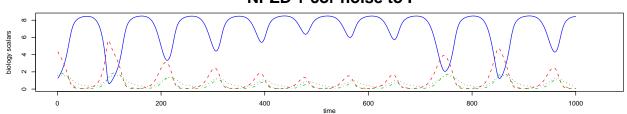




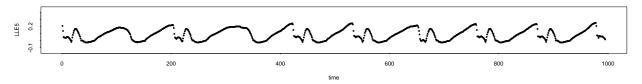
NPZD + noise to I



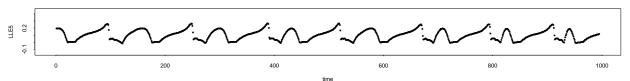
NPZD + cor noise to I



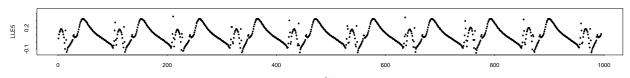
Case 1: LLE5s



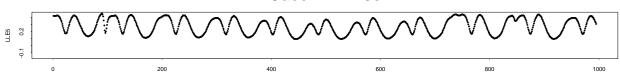
Case 2: LLE5s

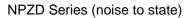


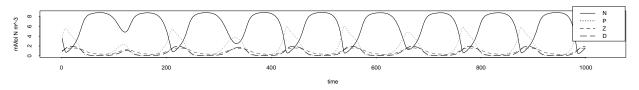
Case 3: LLE5s



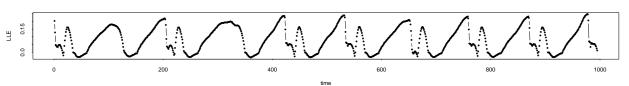
Case 4: LLE5s



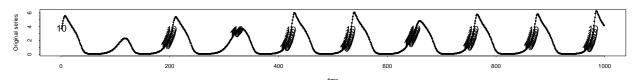




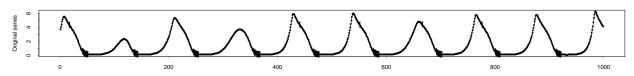
LLE5s

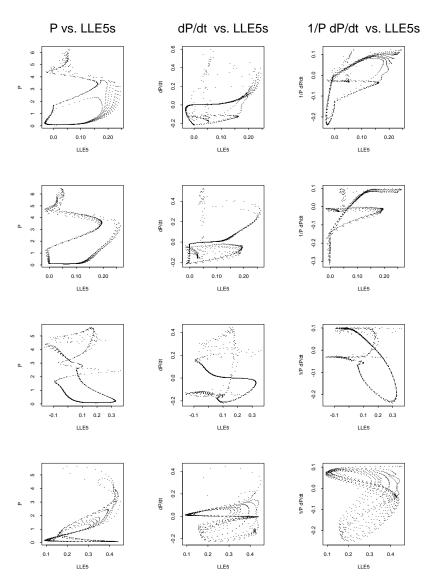


Series coded by size of LLE5s (largest 10%)



Series coded by size of LLE5s (smallest 10%)





Short-term Predictability of Phytoplankton (P)

- Case 1 and 2 are similar.
- Quantity 1/P dP/dt is the relative or fractional growth rate.
 - Shape of phytoplankton limit cycle outlined by P vs 1/P dP/dt, is similar across all four data cases.
 - Local predictability patterns are similar in that the LLE5 values are typically large during the growth phase of the bloom (when $1/P \ dP/dt$ is near a maximum).
- Presence of a secondary period of large LLE5s during the collapse of the bloom is case dependent.

Conclusions and Future Work

- Statistical Framework for Noisy Nonlinear Systems (LEs and LLEs are useful diagnosite tools!)
- Different types of noise can generate very different dynamics (LLEs can vary significantly)
- Need to compare noisy systems with ocean field data
- Development of a class of stochastic models is proposed as a "complement" to the need for more complex deterministic biogeochemical models.

Bailey, B.A., S.C. Doney, and I.D. Lima, Quantifying the effects of dynamical noise on the predictability of a simple ecosystem model, *Environmetrics*, **15**, 337–355, 2004.

Appendix

