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I. BI-DIRECTIONALLY COUPLED RING OF GYROSCOPES
A. Equations of Motion

We consider an array of N vibratory gyroscopes arranged in a ring configuration, coupled bidirectionally along the
drive axis,

My + oy + Fr(ny) = Foj(t) + 2mg; + Y cjh(ag, o)
k—j
m;ii; + cy;9; + Fr(y;) = — 2m;Q. i,

where h is the coupling function between gyroscopes j and k, the summation is taken over those gyroscopes k that
are coupled to gyroscopes j, ¢;i is a matrix of coupling strengths, and Ay — €. By assuming each gyroscope to be
excited by the same external harmonic sine-wave signal with one driving frequency in the drive coordinate axis, i.e.,
F.; = Fysinwgt, and the coupling strength to be identical, i.e., ¢ji = A, the equations of motion take the form

mi; + ct; + kxj + uz? = esinwgt + 2m,y; + A1 — 2z + x,-1)

(1)

mij; + ey + ky; + py; = —2meL ;.

B. Computational Bifurcation Analysis
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FIG. 1: One-parameter bifurcation diagram illustrating the existence and stability properties of synchronized periodic oscilla-
tions in a ring of three vibratory gyroscopes bi-directionally coupled (n=3).

In figure (1), the onset of oscillations governed by the model equations (1) occurs when the coupling strength exceeds
a critical value, which we denote by A\.. When A\ < )., there are two stable periodic solutions and one unstable periodic
solution. As A increases towards \., the two non-zero mean periodic solution and the zero-mean periodic solution
merge in a supercritical pitchfork bifurcation. Past A., only the zero-mean periodic solution exists and becomes
globally asymptotically stable. The oscillations along the sensing axis are, however, unaffected by the change in
coupling. They are always stable and completely synchronized with one another though they are out-of-phase by =
with those of the driving axis due to the sign difference in the Coriolis force terms.



C. Two-Time Scale Analysis

In order to determine an expansion for ;(t) and y;(¢) uniformly valid for large times, we introduce two times scales:
a fast-time scale £ = wyt and a slow-time scale n = et. In order to introduce these two-time scales into (1), we need
expression for the first and second derivatives of  and y with respect to ¢, which we obtain by using the chain rule:

dfj &rj 8;vj d2(Ej 28 BQmj 2 82xj
it Rt /) 2ew 2
i =Y T, ag ~ Vige -+ 22w “ocon T o (22)
dy; Oy , Oyi  dy; _ 29, %y 20%;
I - i = 2 ) 2b
at ~ "oe Ty g T Wage T Wigee, T G (2b)
We also expand x; and y; in a truncated Fourier series of e:
T; = xoj + 6(.231]‘ + Alj cos& + B1j sing) + 82(.1‘2j + Agj COS{ + ng Sinf + Egj cos 2€ + F2]‘ sin 25) 4+ ... (33,)
yj = ij —+ E(ylj + Clj COS§ —+ Dlj sin E) + 82(562]‘ —+ Ogj COSf —+ ng Sinf —+ ng COS 2§ + ng SiIl 25) =+ ... (3b)

Substituting (2) and (3) into (1) and neglecting terms of O(g3), we get, after collecting equal powers of ¢, a set of
partial differential equations for each order terms. The expressions for O(1) are,

Toj 0wy Iyoj
mw;; 3527 + cwq agj + Ko + pag; = 2mQwq 853 + M@o,j4+1 — 2205 + T0,5-1), (4a)
(9 Yo, Yo Oxg
mw? 8527 + cwy o€ I+ kyoj + 1yo; = —2mQwq ﬁfj' (4b)
By collecting O(g) terms, we get:
821'1 i 8{)31 i 81/1 .
mw 3§2J + cwq 85] + Ky + Bpag ey = 2mQwg %J + Mz1,j41 — 2215 + T1,5-1), (5a)
2
Y1j Oy 0wy
mw? 8§2j + cwy 85] + kY1 + 3uy(2)jy1j = —2mQdea—§], (5b)
0%?X1; 0X1,; . oYy
mw 6521J + cwq 8§1j + £ X715 + 3pag; X1; = sinwgt + 2mQ.wq 8; + X1 — 2X + Xy ), (5¢)
%Y, oYy 0Xy
w?i 8§2J + cwq 6§j + HYU + 3,uy§jY1j = —2mQ,wy 8§J, (5d)

where X1 = Ayjcos€ + Byjsiné and Yy; = Cyjcos€ + Dyjsiné.
Collecting O(e?) terms we get:

0%z Oxa, 3 0ys
meZl 65223 + cwy 6‘27 + KToj + SIuJJ()j(.’E()j.’L‘Qj + §HX1]H ) =2mwy—— BT + )\(.TQ,J+1 2$2j + .’132’]‘,1), (6&)
2 0%ys 0ya; O0xa;
mw? 8§2j + cwy 85] + KYyaj + 3uy(2)jy2j = —2mQdea—§j, (6b)
%X 0Xo; 3 Y-
mw?i 852 + CWq 862] + HXQJ’ + 3ux0j(xon2j + §||X13||2) = QmQde 8f2j (X27j+1 — 2X2j + X2,j—1)a (6(‘,)

0Yaj . OYo 0Xa;
mw? 5522j + cw, 85 —|—/€Yzj +3ﬂyogY21 = ngzwdaigj’ (6d)

where || X ;]| = A}, + Bi;, Xaj = Agjcos€ 4 Byjsiné + Eajcos 26 + Fyjsin2€ and Ya; = Cyjcosé + Dajsiné +
Goj cos 2§ + Hyjsin 2€.

We solve the resulting system of equations analytically via Maple which yields a unique solution. Finally, we can
now use (3) to reconstruct, up to O(£?), the vibrations along the driving, z;(t), and sensing, y;(¢), modes. Figures 2
and 3 compare the time-series of these reconstructed asymptotic solutions for a ring of three gyroscopes against those
from numerical simulations. When A > A, the oscillations of the driving modes become entrained with one another,
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FIG. 2: Comparison of asymptotic approximation up to 0(82) term and numerical solutions. Passed the critical coupling
strength A.. Parameters are: Ay = 0.001, A = —0.883, 2, = 308.
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FIG. 3: Solutions are obtained analytically through the asymptotic approximation up to 0(62) compared against numerical
simulations, as A is slightly to the left of the critical coupling strength A.. Parameters are: Az = 0.001, A = —0.884, ), = 308.

giving rise to a globally asymptotic stable synchronized state. When A < A., however, both numerical solutions and
asymptotic solutions of the driving modes oscillate with non-zero mean.

D. Onset of Synchronization

We estimate the onset of synchronization of the coupled gyroscope system by averaging the values at which the
solutions for x;(t), given by the asymptotic expressions (3), touch zero. Direct calculations yield the critical values
in parameters space (Age, Ae, Qzc), in which we write Ag. as a function of A\, and .., through

1
Age = g(Add + Ad,, + Adc3)7
A, - —Xull= VIIX1[[2 — 4221 — [[Xo1])zor
- 2(z91 — || X))
A, — —IXell= VIIXi2[[? — 4w — [[ X2l 701
” 2(w21 — || Xa2]|)
Ach = Adc2'

where || X11|| = VA%, + BY, || Xa2l] = VAL, + B, || Xo1|| = VE2, + FZ, || X2l = F3,. Figure 4 shows a
direct comparison of the analytical expression for A4 as a function of coupling strength \., with 2, held fixed, against
the onset of synchronization obtained through numerical simulations with the aid of the continuation package AUTO.
A similar curve is obtained for larger values of €, but with a slight vertical shift that increases as (), increases. In
other words, the larger the Coriolis force is the larger the amplitude of the driving force that is required to sustain
the synchronization state of the coupled gyroscope system.

Holding now Ay fixed, while varying €2,, we obtain the locus of the pitchfork bifurcation A. as a function of 2,.
The locus traces a two-parameter bifurcation diagram shown in Fig. 5.
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FIG. 4: Two-parameter bifurcation diagram outlines the region of parameter space (A4, A) where the vibrations of a system of
three gyroscopes, coupled bi-directionally, become completely synchronized.
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FIG. 5: Two-parameter bifurcation diagram shows the region of parameter space (£2., A\) where the vibrations of a system of
three gyroscopes, coupled bi-directionally, become completely synchronized but Ag is held fixed at 0.001.

II. EFFECTS OF NOISE
A. Assumption, Condition and Numerical Algorithm

With the expectation of noise occurred in the Coupled Inertial Navigation System to arise from the two main
sources: fluctuations in the mass of individual coupled gyroscopes caused by material impurity and contamination of
a target signal. Informal discussions with experimentalists suggest that a range m; = 1.0F — 09 & 10% is actually
reasonable. We assume Gaussian band-limited noise having zero mean, correlation time 7. (usually 77 << 7., where
7r is the time constant of each individual gyroscope, so that noise does not drive its response), and variance 2. From
a modeling point of view, colored noise n(t) that contaminates the signal should appear as an additive term in the
sensing axis, leading to a stochastic (Langevin) version of the model equations,

mji; + cij + ke + /wc? = Agsinwgt 4+ 2m;Q.7; + Mxj41 — x5),

m]@j + Cyj + RYj + uy? = *QijZiij, (7)
dﬁ = _& + Q&(t)
dt Te Te .

B. Robustness

In this work we will consider the situation wherein the different noise terms, 7;(t), are uncorrelated; however,
for simplicity, we will assume them to have the same intensity D. Each (colored) noise 7;(t) is characterized by



< ni(t) >= 0 and < n;(t)ni(s) >= (D/7.) x exp|—|t — s|/7e] >, where D = %72/2 is the noise intensity, £(¢) is a
gaussian white noise function of zero mean, and the “white” limit is obtained for vanishing 7.; in practice, however,
the noise is always band-limited. The new computational bifurcation diagrams (not shown for brevity) are very
similar to the one- and two-parameter diagrams shown in Fig. (1), Fig. (4), and Fig. (5), except that now the critical
values of coupling strength A, as well as 2. and A, are slighted shifted with respect to those of the identical system.
Each ensemble consisted of M = 100 simulation samples with random fluctuations in mass and noise intensities. The
phase of each individual j gyroscope was calculated through «; = arctan(—y;/way;). Then the phase drift on that
individual gyroscope was obtained as the difference between its phase with noise and its phase without noise, i.e.,
0; = a°'*¢ — a2 "¢ Finally, the average phase drift 6;(t) = (1/MN) Z]A/ijf 6, of the entire ensemble was calculated
for both cases, uncoupled and coupled ensembles. Figure 13 shows, in particular, the phase drift of an ensemble of
three individual gyroscopes and the phase drift of a similar ensemble but with coupling.
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FIG. 6: Comparison of phase drift between (left) three uncoupled gyroscopes and (right) three coupled gyroscope system.
Parameters are: Aq = 0.001, Q. = 100, and mass m; = 1.0F — 09 £+ 10% with noise intensities, D = +£1.0FE — 09.

To calculate the actual reduction factor we first compute the interquartile range (IQR) of both uncoupled and
coupled ensembles. The IQR measures the phase drift variation from the 25% percentile to the 75% percentile.
The reduction factor is then the ratio IQR(0¢) / IQR(6"), where the superscript indicates whether the gyroscopes
are coupled or uncoupled, respectively. Figure (7) shows the resulting reduction factors for various network sizes.
Careful examination of the average amplitude response of an ensemble of coupled gyroscopes [Fig. (7)] reveals that
the amplitude of the sensing axis is dynamically dependent on the number N of gyroscopes and the coupling strength
A. In fact, the largest amplitudes are achieved in the vicinity of N = 8.
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FIG. 7: (a)[Left] Reduction factor in the phase drift of a coupled gyroscope system with the interquartile range of ensembles
between 80 and 100 samples. Parameters are: Aq = 0.001, 2. = 100, and mass m; = 1.0E — 09 £ 10% with noise intensities,
D =+1.0FE —09. (b) [Right] Average amplitude response of sensing axis of ensembles of coupled gyroscopes with various sizes
and coupling strengths. Parameters are: Aq = 0.001, Q. = 100, and mass m; = 1.0E — 09 £ 10% without noise.



