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I. BI-DIRECTIONALLY COUPLED RING OF GYROSCOPES

A. Equations of Motion

We consider an array of N vibratory gyroscopes arranged in a ring configuration, coupled bidirectionally along the
drive axis,

mj ẍj + cxj ẋj + Fr(xj) = Fej(t) + 2mjΩz ẏj +
∑

k→j

cjkh(xj , xk)

mj ÿj + cyj ẏj + Fr(yj) = − 2mjΩzẋj ,

where h is the coupling function between gyroscopes j and k, the summation is taken over those gyroscopes k that
are coupled to gyroscopes j, cjk is a matrix of coupling strengths, and Ad → ε. By assuming each gyroscope to be
excited by the same external harmonic sine-wave signal with one driving frequency in the drive coordinate axis, i.e.,
Fei = Fd sinwdt, and the coupling strength to be identical, i.e., cjk = λ, the equations of motion take the form

mẍj + cẋj + κxj + µx3
j = ε sin wdt + 2mΩz ẏj + λ(xj+1 − 2xj + xj−1)

mÿj + cẏj + κyj + µy3
j = −2mΩzẋj .

(1)

B. Computational Bifurcation Analysis

FIG. 1: One-parameter bifurcation diagram illustrating the existence and stability properties of synchronized periodic oscilla-
tions in a ring of three vibratory gyroscopes bi-directionally coupled (n=3).

In figure (1), the onset of oscillations governed by the model equations (1) occurs when the coupling strength exceeds
a critical value, which we denote by λc. When λ < λc, there are two stable periodic solutions and one unstable periodic
solution. As λ increases towards λc, the two non-zero mean periodic solution and the zero-mean periodic solution
merge in a supercritical pitchfork bifurcation. Past λc, only the zero-mean periodic solution exists and becomes
globally asymptotically stable. The oscillations along the sensing axis are, however, unaffected by the change in
coupling. They are always stable and completely synchronized with one another though they are out-of-phase by π
with those of the driving axis due to the sign difference in the Coriolis force terms.
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C. Two-Time Scale Analysis

In order to determine an expansion for xj(t) and yj(t) uniformly valid for large times, we introduce two times scales:
a fast-time scale ξ = wdt and a slow-time scale η = εt. In order to introduce these two-time scales into (1), we need
expression for the first and second derivatives of x and y with respect to t, which we obtain by using the chain rule:

dxj

dt
= wd

∂xj

∂ξ
+ ε

∂xj

∂η
,

d2xj

dt2
= w2

d

∂2xj

∂ξ2
+ 2εwd

∂2xj

∂ξ∂η
+ ε2 ∂2xj

∂η2
, (2a)

dyj

dt
= wd

∂yj

∂ξ
+ ε

∂yj

∂η
,

d2yj

dt2
= w2

d

∂2yj

∂ξ2
+ 2εwd

∂2yj

∂ξ∂η
+ ε2 ∂2yj

∂η2
. (2b)

We also expand xj and yj in a truncated Fourier series of ε:

xj = x0j + ε(x1j + A1j cos ξ + B1j sin ξ) + ε2(x2j + A2j cos ξ + B2j sin ξ + E2j cos 2ξ + F2j sin 2ξ) + . . . (3a)

yj = y0j + ε(y1j + C1j cos ξ + D1j sin ξ) + ε2(x2j + C2j cos ξ + D2j sin ξ + G2j cos 2ξ + H2j sin 2ξ) + . . . (3b)

Substituting (2) and (3) into (1) and neglecting terms of O(ε3), we get, after collecting equal powers of ε, a set of
partial differential equations for each order terms. The expressions for O(1) are,

mw2
d

∂2x0j

∂ξ2
+ cwd

∂x0j

∂ξ
+ κx0j + µx3

0j = 2mΩzwd

∂y0j

∂ξ
+ λ(x0,j+1 − 2x0j + x0,j−1), (4a)

mw2
d

∂2y0j

∂ξ2
+ cwd

∂y0j

∂ξ
+ κy0j + µy3

0j = −2mΩzwd

∂x0j

∂ξ
. (4b)

By collecting O(ε) terms, we get:

mw2
d

∂2x1j

∂ξ2
+ cwd

∂x1j

∂ξ
+ κx1j + 3µx2

0jx1j = 2mΩzwd

∂y1j

∂ξ
+ λ(x1,j+1 − 2x1j + x1,j−1), (5a)

mw2
d

∂2y1j

∂ξ2
+ cwd

∂y1j

∂ξ
+ κy1j + 3µy2

0jy1j = −2mΩzwd

∂x1j

∂ξ
, (5b)

mw2
d

∂2X1j

∂ξ2
+ cwd

∂X1j

∂ξ
+ κX1j + 3µx2

0jX1j = sin wdt + 2mΩzwd

∂Y1j

∂ξ
+ λ(X1,j+1 − 2X1j + X1,j−1), (5c)

mw2
d

∂2Y1j

∂ξ2
+ cwd

∂Y1j

∂ξ
+ κY1j + 3µy2

0jY1j = −2mΩzwd

∂X1j

∂ξ
, (5d)

where X1j = A1j cos ξ + B1j sin ξ and Y1j = C1j cos ξ + D1j sin ξ.
Collecting O(ε2) terms we get:

mw2
d

∂2x2j

∂ξ2
+ cwd

∂x2j

∂ξ
+ κx2j + 3µx0j(x0jx2j +

3

2
||X1j ||2) = 2mΩzwd

∂y2j

∂ξ
+ λ(x2,j+1 − 2x2j + x2,j−1), (6a)
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0jy2j = −2mΩzwd

∂x2j
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mw2
d

∂2X2j

∂ξ2
+ cwd
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+ κX2j + 3µx0j(x0jX2j +

3

2
||X1j ||2) = 2mΩzwd

∂Y2j

∂ξ
+ λ(X2,j+1 − 2X2j + X2,j−1), (6c)
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∂ξ2
+ cwd

∂Y2j

∂ξ
+ κY2j + 3µy2

0jY2j = −2mΩzwd

∂X2j

∂ξ
, (6d)

where ||X1j ||2 = A2
1j + B2

1j , X2j = A2j cos ξ + B2j sin ξ + E2j cos 2ξ + F2j sin 2ξ and Y2j = C2j cos ξ + D2j sin ξ +
G2j cos 2ξ + H2j sin 2ξ.

We solve the resulting system of equations analytically via Maple which yields a unique solution. Finally, we can
now use (3) to reconstruct, up to O(ε2), the vibrations along the driving, xj(t), and sensing, yj(t), modes. Figures 2
and 3 compare the time-series of these reconstructed asymptotic solutions for a ring of three gyroscopes against those
from numerical simulations. When λ > λc, the oscillations of the driving modes become entrained with one another,
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FIG. 2: Comparison of asymptotic approximation up to O(ε2) term and numerical solutions. Passed the critical coupling
strength λc. Parameters are: Ad = 0.001, λ = −0.883, Ωz = 308.
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FIG. 3: Solutions are obtained analytically through the asymptotic approximation up to O(ε2) compared against numerical
simulations, as λ is slightly to the left of the critical coupling strength λc. Parameters are: Ad = 0.001, λ = −0.884, Ωz = 308.

giving rise to a globally asymptotic stable synchronized state. When λ < λc, however, both numerical solutions and
asymptotic solutions of the driving modes oscillate with non-zero mean.

D. Onset of Synchronization

We estimate the onset of synchronization of the coupled gyroscope system by averaging the values at which the
solutions for xj(t), given by the asymptotic expressions (3), touch zero. Direct calculations yield the critical values
in parameters space (Adc, λc,Ωzc), in which we write Adc as a function of λc and Ωzc, through

Adc =
1

3
(Adc1

+ Adc2
+ Adc3

),

Adc1
=

−||X11|| −
√

||X11||2 − 4(x21 − ||X21||)x01

2(x21 − ||X21||)

Adc2
=

−||X12|| −
√

||X12||2 − 4(x22 − ||X22||)x01

2(x21 − ||X22||)
Adc3

= Adc2
.

where ||X11|| =
√

A2
11 + B2

11, ||X12|| =
√

A2
12 + B2

12, ||X21|| =
√

E2
21 + F 2

21, ||X22|| =
√

E2
22 + F 2

22. Figure 4 shows a
direct comparison of the analytical expression for Adc as a function of coupling strength λc, with Ωz held fixed, against
the onset of synchronization obtained through numerical simulations with the aid of the continuation package AUTO.
A similar curve is obtained for larger values of Ωz but with a slight vertical shift that increases as Ωz increases. In
other words, the larger the Coriolis force is the larger the amplitude of the driving force that is required to sustain
the synchronization state of the coupled gyroscope system.

Holding now Ad fixed, while varying Ωz, we obtain the locus of the pitchfork bifurcation λc as a function of Ωz.
The locus traces a two-parameter bifurcation diagram shown in Fig. 5.
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FIG. 4: Two-parameter bifurcation diagram outlines the region of parameter space (Ad, λ) where the vibrations of a system of
three gyroscopes, coupled bi-directionally, become completely synchronized.
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FIG. 5: Two-parameter bifurcation diagram shows the region of parameter space (Ωz, λ) where the vibrations of a system of
three gyroscopes, coupled bi-directionally, become completely synchronized but Ad is held fixed at 0.001.

II. EFFECTS OF NOISE

A. Assumption, Condition and Numerical Algorithm

With the expectation of noise occurred in the Coupled Inertial Navigation System to arise from the two main
sources: fluctuations in the mass of individual coupled gyroscopes caused by material impurity and contamination of
a target signal. Informal discussions with experimentalists suggest that a range mi = 1.0E − 09 ± 10% is actually
reasonable. We assume Gaussian band-limited noise having zero mean, correlation time τc (usually τF << τc, where
τF is the time constant of each individual gyroscope, so that noise does not drive its response), and variance σ2. From
a modeling point of view, colored noise η(t) that contaminates the signal should appear as an additive term in the
sensing axis, leading to a stochastic (Langevin) version of the model equations,

mj ẍj + cẋj + κxj + µx3
j = Ad sin wdt + 2mjΩz ẏj + λ(xj+1 − xj),

mj ÿj + cẏj + κyj + µy3
j = −2mjΩzẋj ,

dη

dt
= −ηj

τc

+

√
2

τc

ξ(t).

(7)

B. Robustness

In this work we will consider the situation wherein the different noise terms, ηi(t), are uncorrelated; however,
for simplicity, we will assume them to have the same intensity D. Each (colored) noise ηi(t) is characterized by
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< ηi(t) >= 0 and < ηi(t)ηi(s) >= (D/τc) × exp[−|t − s|/τc] >, where D = σ2τ2
c /2 is the noise intensity, ξ(t) is a

gaussian white noise function of zero mean, and the “white” limit is obtained for vanishing τc; in practice, however,
the noise is always band-limited. The new computational bifurcation diagrams (not shown for brevity) are very
similar to the one- and two-parameter diagrams shown in Fig. (1), Fig. (4), and Fig. (5), except that now the critical
values of coupling strength λc as well as Ωc and Adc are slighted shifted with respect to those of the identical system.
Each ensemble consisted of M = 100 simulation samples with random fluctuations in mass and noise intensities. The
phase of each individual j gyroscope was calculated through αj = arctan(−ẏj/wdyj). Then the phase drift on that
individual gyroscope was obtained as the difference between its phase with noise and its phase without noise, i.e.,

θj = αnoise
j −αno noise

j . Finally, the average phase drift θj(t) = (1/MN)
∑MN

j=1
θj of the entire ensemble was calculated

for both cases, uncoupled and coupled ensembles. Figure 13 shows, in particular, the phase drift of an ensemble of
three individual gyroscopes and the phase drift of a similar ensemble but with coupling.
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FIG. 6: Comparison of phase drift between (left) three uncoupled gyroscopes and (right) three coupled gyroscope system.
Parameters are: Ad = 0.001, Ωz = 100, and mass mj = 1.0E − 09 ± 10% with noise intensities, D = ±1.0E − 09.

To calculate the actual reduction factor we first compute the interquartile range (IQR) of both uncoupled and
coupled ensembles. The IQR measures the phase drift variation from the 25% percentile to the 75% percentile.
The reduction factor is then the ratio IQR(θc) / IQR(θu), where the superscript indicates whether the gyroscopes
are coupled or uncoupled, respectively. Figure (7) shows the resulting reduction factors for various network sizes.
Careful examination of the average amplitude response of an ensemble of coupled gyroscopes [Fig. (7)] reveals that
the amplitude of the sensing axis is dynamically dependent on the number N of gyroscopes and the coupling strength
λ. In fact, the largest amplitudes are achieved in the vicinity of N = 8.
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FIG. 7: (a)[Left] Reduction factor in the phase drift of a coupled gyroscope system with the interquartile range of ensembles
between 80 and 100 samples. Parameters are: Ad = 0.001, Ωz = 100, and mass mj = 1.0E − 09 ± 10% with noise intensities,
D = ±1.0E − 09. (b) [Right] Average amplitude response of sensing axis of ensembles of coupled gyroscopes with various sizes
and coupling strengths. Parameters are: Ad = 0.001, Ωz = 100, and mass mj = 1.0E − 09 ± 10% without noise.


