A Random Forest Model for the
Analysis of Chemical Descriptors for
the Elucidation of HIV-1 Protease
Protein-Ligand Interactions

/

Gene M. Ko, A. Srinivas Reddy, Sunil Kumar, Barbara A.
Bailey, and Rajni Garg

AP10-02

4. +° SAN DIEGO STATE
Q!onip.l”‘ UNIVERSITY

T
$
Y

A CDIEDSD




A Random Forest Model for the Analysis of Chemical Descriptors for

the Elucidation of HIV-1 Protease Protein-Ligand Interactions

Gene M. Ko', A. Srinivas Reddy?, Sunil Kumar', Barbara A. Bailey', and Rajni Garg™'
'Computational Science Research Center, San Diego State University, San Diego, CA
*Department of Biomedical Engineering, University of California, Davis, Davis, CA
*Corresponding author: 5500 Campanile Drive, San Diego, CA 92182-1245, rgarg@mail.sdsu.edu

Abstract: A model for the classification of 70
HIV-1 protease crystal structure binding pockets
to one of its complexed FDA approved protease
inhibitors utilizing Random Forest has been
developed. 456 chemical descriptors of the
binding pocket of each crystal structure have
been computed and are used to develop the
classification =~ model.  Simulations  were
performed to determine the optimal Random
Forest model parameters. An implicit feature
relevance measure for the optimal model was
analyzed using the Gini importance measure.
The chemical descriptors most influential in
classifying the binding pockets of HIV-1
protease to its complexed protease inhibitor were
analyzed and interpreted in terms of the binding
pocket structure and their protein-ligand
interactions. The selected descriptors by the
Random Forest model provides insight on the
structure of HIV-1 protease which can be used to
drive the drug discovery process to design novel
HIV-1 protease inhibitors.
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1. Introduction

HIV-1 protease is a popular target in the
design of new anti-HIV drugs called HIV-1
protease inhibitors, which are designed to inhibit
the activity of HIV-1 protease to prevent
cleavage of nascent protein polypeptides into
active viruses [1]. To aid in the development of
new pharmaceutical drugs, hundreds of crystal
structures of HIV-1 protease complexed with
potential drug candidates have been created and
analyzed for their physiochemical properties.
Many of these crystal structures are deposited in
the Protein Data Bank (PDB) [2], a crystal
structure repository database for large biological
macromolecules.

Chemical and structural descriptors can be
computed from the crystal structures of proteins
based on their atomic makeup which are used for
the development of QSAR/QSPR (quantitative

structure-activity/structure-property relationship)
models to establish a mathematical relationship
between the molecular structure and chemical
properties for the classification of molecules or
prediction of biological activity [3]. The number
of descriptors can range in the hundreds and
usually exceeds the number of samples available.
In a chemometrics study by Svetnik et al.,
Random Forest was found to be one of the top
classifiers, being able to handle high dimensional
data and ignoring redundant and irrelevant
descriptors [4].

In the present study, we investigate the
relationship between the HIV-1 protease binding
pockets in terms of their chemical descriptors to
its complexed protease inhibitors. We focus our
study on the HIV-1 protease crystal structures
which are complexed to one of the nine FDA
approved HIV-1 protease inhibitors: Darunavir
(017), Nelfinavir (1UN), Amprenavir (478),
Lopinavir (AB1), Atazanavir (DR7), Indinavir
(MK1), Ritonavir (RIT), Saquinavir (ROC), and
Tipranavir (TPV). These crystal structures were
created to study the binding mechanism of the
various protease inhibitors with both the wild
type and commonly accepted drug resistant HIV-
1 protease proteins. Sequence analysis of these
crystal structures reveals a wide variation of the
amino acid sequences and is representative of
both the wild type and commonly accepted drug
resistances for each complexed ligand. The
binding pocket shape is directly influenced by
the ligand complexed to the structure [5], thus it
is crucial to match the ligand with its pocket
environment. The chemical descriptors of the
binding pockets of each crystal structure were
computed. We evaluated the use of Random
Forest for classifying HIV-1 protease crystal
structures. This classification model will provide
an understanding of the relationship between the
most relevant quantitative chemical descriptors
to the conformation of HIV-1 protease caused by
the mutations present in the binding pockets and
their complexed protease inhibitor.
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2. Methods
2.1 Dataset

The PDB was searched for all HIV-1 protease
crystal structures complexed with one of the nine
FDA approved protease inhibitors. The binding
pocket of each crystal structure was identified as
any amino acid within a 6 angstrom radius of the
complexed ligand. A total of 70 binding pockets
were extracted from the crystal structures. The
binding pockets were extracted using PyMOL
(Figure 1) [6].

Figure 1. Extraction of binding pocket. All amino
acids within a 6 angstrom radius is considered to form
the binding pocket and is extracted from the HIV-1
protease crystal structure. The complexed ligand is
subsequently removed.

2.2 Descriptor Calculations

To  compute the  quantum-chemical
descriptors of the binding pocket, calculations of
the molecular electronic structure must be

computed. The Austin Model 1 (AM1) energy
calculation of each pocket structure using the
atomic coordinates of the crystal structure was
computed using AMPAC [7]. The chemical
descriptors were then computed using Codessa
[8]. A set of 562 constitutional, geometrical,
electrostatic, topological, and quantum-chemical
descriptors were derived from the molecular
structure and AM1 energy calculations of each of
the binding pocket structures. Constitutional
descriptors describe the non-geometric molecular
composition of the structure while geometrical
descriptors describe the 3D representation of the
molecule. Topological descriptors use graph
theory to describe the atomic connectivity of a
molecule. Electrostatic descriptors describe the
charge distribution of the molecule. Quantum-
chemical descriptors use quantum mechanical
theory to describe a molecule's electronic and
geometrical properties and their atomic
interactions.

To reduce the descriptor space, we eliminated
any descriptors with null or constant values
across the majority of the samples. Null values
occur because the descriptor is specific for atoms
which are not present in the structure. This
resulted in a total of 456 descriptors in the
dataset. All descriptor values were recentered to
have a zero mean and a standard deviation of
one.

2.3 Random Forest

Random Forest as a classification method is a
classification tree based ensemble learning
technique which consists of a collection of
unpruned classification trees used collectively to
determine the output class for a given
observation [9]. Ensemble learners utilize
multiple models in combination which may
result in an improved predictive model. A
Random Forest classification model is a
collection of classification tree predictors

{h(x,0,),k=12,....T}

where ©, are independent identically

distributed random vectors which each cast a
vote for a class for a given input vector X [9].
Each of the classification tree models are grown
fully without pruning as to keep bias at a
minimum. In the tree growing steps of Random
Forest, a small random sampling of the variables
are considered for each nodal split. The Gini



measure of impurity is used to determine the
variable selected to make the nodal split. The
Gini impurity measure at node 7 is defined as
g(t)=2p(il)p(il1)
J#i

where [ and j are the categories for the
variable. The subsequent Gini criterion for
determining a split with variable § at node f is
defined as

D (s,1) = g(t) - prg(tr) - prg(tr)
where pr and pr are the proportion of

observations in ¢ in the left and right child nodes
respectively. The variable § which maximizes

o (S, t ) is selected for the nodal split.

In the statistical computing environment R
[10], there are two major parameters used to train
the Random Forest classifier model: nr.., the
number of classification trees to train in the
forest classifier, and myy, the number of variables
to randomly consider at each node of each tree.
As each classification tree is built, an estimate of
the Random Forest classifier performance is
measured, called the Out-of-Bag (OOB) error.
The OOB error measures the classification error
over all of the trained classification trees in the
Random Forest model.

Random Forest includes an implicit measure
of wvariable importance when determining
classification which is obtained by the Gini
importance measurement [11]. The Gini
importance measures the improvement of each
variable in the Gini criterion used to split the
classification tree nodes.

Random Forest is used to classify each of the
70 HIV-1 protease binding pockets to one of the
nine FDA approved HIV-1 protease. For the
determination of the optimal tree size with the
lowest OOB error, a Random Forest classifier is
trained with parameters nr.. = 20000 and the
default parameter of my,. The default parameter
of myy in a Random Forest classifier is equal to
the square root of the number of descriptors
available. In R, as each tree is generated in a
single Random Forest model, the OOB error is
computed, enabling the determination of the
optimal tree size. 40,000 Random Forest models
were generated from which the average OOB
error is determined at each tree size. The optimal
value of my, for the optimal nr.. value is then
determined by the smallest average OOB error

from a simulation of 10 Random Forest models
at each my,y value from 1 to 456.

A final Random Forest model is generated
with the optimal nr.. and my, parameters. A list
of variables deemed to be the most important set
of chemical descriptors in building the classifier
is determined by the Gini criteria.

4. Results and Discussion
4.1 Random Forest

From the simulation of 40,000 Random
Forest models, each of the classification trees
were built using a default parameter of my, =
J456 = 21. The optimal tree size was determined

to be at nr.. = 10586 with an average OOB error
of 40.113% (Figure 2a). Next, the optimal my,
parameter was determined. Ten Random Forest
models were generated using nr.. = 10586 at
each varying value of my, from 1 to 456. It was
observed that the optimal my, value with the
minimal average OOB error occurs near the
default value of my, (Figure 2b). This
observation was consistent with the observations
in the Random Forest simulations by Svetnik et
al. [4].

We also observed that the top group of
descriptors remain generally the same with
varying values of my, near the default value, but
varies slightly in its order, which confirms that
Random Forest is relatively insensitive to the
value of my, except at the extremes. In addition,
although the OOB error converges relatively
quickly, we observed it was less likely that the
top ranked descriptors will deviate when more
classification trees were introduced. This
indicates a large tree size helps to stabilize the
ranking of the top group of descriptors that best
influence the classification ability of the Random
Forest model.

A final Random Forest model was generated
using the parameters nre = 10586 and my, = 21.
The list of the most important descriptors
determined by the Gini importance measurement
of this model is shown in Figure 3. Based on the
natural break in the elbow curve of the Gini
importance plot, the top 12 descriptors are
analyzed for their chemical significance of the
structure of HIV-1 protease binding pocket and
the protein-ligand interactions due to the atomic
interactions described by the quantum-chemical
descriptors.
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Figure 2. Random Forest simulation results. (a) The
average Out-of-Bag (OOB) error for each tree size in a
simulation of 20,000 trees run 40,000 times for the
determination of the optimal tree size Nrp.. The
optimal tree size is N = 10586 with an average
OOB error of 40.113%. (b) The average OOB error
for each value of myy in a simulation of 10586
classification trees run 10 times for the optimal myy
determination. The optimal value of my, with the
smallest OOB error occurs near the default parameter

Ofmtr},:zl.

4.2 Descriptor Interpretations

The top 12 ranked descriptors obtained by the
Random Forest variable importance method
(Figure 3) are exchange energy + electron-
electron repulsion for a C-N bond, max
resonance energy for a C-C bond, molecular
volume/XYZ box, min >0.1 bond order of a C
atom, max total interaction for a C-C bond,
relative number of benzene rings, average
information content (order 1), exchange energy +
electron-electron repulsion for a C-C bond,

maximum electron-nuclear attraction for a C-N
bond, relative number of C atoms, YZ
Shadow/YZ rectangle, and the number of
benzene rings.

°

exch..eng....e.e.rep.for.a.C.N.bond
Max.resonance.energy.for.a.C.C.bond
Molecular volume.XYZ.Box
Min...0.1..bond.order.of.a.C.atom

Max total.interaction for.a.C.C.bond
Relative.number.of benzene rings
Average Information.content..order.1
exch.eng....e.erep.fora.C.C.bond

Max e n.attraction.for.a.C N.bond
Relative.number.of C_atoms

YZ.Shadow...YZ Rectangle
Number.of.benzene.rings
Relative.number.of.single.bonds
Relative.number.of aromatic.bonds
exch.eng....e.e.rep.fora.C.0.bond

Average Information.content..order.0

Polarity. parameter...square. distance
Min.net.atomic.charge for.a.H.atom

Image.of the.Onsager Kirkwood.solvation.energy
Max.e.n.attraction.for.a.H.atom

Max e n.attraction.for.a.C.C bond
Max.e.e.repulsion.for.a.H.atom

Tot.dipole.of the. molecule
Max.resonance.energy.for.a.C.H.bond
Max.atomic.state.energy for.a.H.atom
Average.Bonding Information.content..order.1
YZ Shadow

Average Structural Information.content..order.1
Max.resonance.energy.for.a.C.O.bond

Tot. molecular.2.center.resonance.energy.....of atoms

©o
o

°
°%60000

064

%00
00000000000
=]

00 0z 04 06
MeanDecreaseGini
Figure 3. Variable importance measure of the optimal
Random Forest classification model using the Gini
importance measure. Due to the natural break in the
curve, the top 12 descriptors determined by the Gini
importance have been selected for chemical

interpretation.

The HIV-1 protease binding site is known to
be hydrophobic in nature and thus protease
inhibitors with hydrophobic side chains have a
higher binding affinity [12]. The benzene rings
descriptors reflect upon the hydrophobic amino
acid residues which contain a benzene ring. The
wild type sequence of HIV-1 protease does not
contain any residues which contain a benzene
ring, and thus mutations resulting in a residue
which does contain one may have an effect on
the shape of the binding pocket in terms of steric
interactions.

The physical shape of the binding pocket is
emphasized by the geometrical descriptors YZ
Shadow/YZ rectangle and molecular
volume/XYZ box. The atomic connectivity of
the binding pocket is described by the
topological descriptor average information
content. Electrostatic energy between the binding
pocket and the ligand is revealed by the
exchange energy and electron-electron repulsion
for C-N and C-C bonds descriptors. The



importance of benzene rings is signified by the
C-C bond resonance energy.

5. Conclusions

In this study, we have used Random Forest to
build an appropriate classification model for
predicting the HIV-1 protease binding pocket
structures to its complexed HIV-1 protease
inhibitor. We have interpreted the descriptors
selected by the Random Forest wvariable
importance measure.

The top ranked descriptors reflected the
geometric shape and atomic makeup of the
binding site. The quantum-chemical descriptors
reflected the energy exchange between the
binding pocket and ligand as a result of London-
van der Waals interactions in the protein-ligand
binding process, specifically between the C-C
and C-N atoms. These descriptors provide a
means of quantifying the geometric and
electronic properties of the HIV-1 protease
binding pocket which can be used to design
novel HIV-1 protease inhibitors.
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