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1San Diego State University, 2San Diego State Univeristy
1ebaik@sciences.sdsu.edu, 2carreter@sciences.sdsu.edu

Abstract: We consider the Gross-
Pitaeviskii Equation (GPE) to describe
the dynamics of vortices in one-component
BECs. In order to solve GPE, we use the
2nd order central finite difference scheme
for the spatial derivation and the 4th order
Runge-Kutta method to integrate in time.
For a vortex wave function, we solve the
well known vortex profile ODE numerically.
With different external potentials, we ob-
serve different dynamics of vortices in BECs
such as the vortex drift on a plane potential
with an angle, the vortex-vortex interaction
on a plane field with the same vorticity and
the opposite vorticity, and the vortex pre-
cession on a magnetic trap potential. Our
computational analysis observes all different
vortex dynamics, and it confirms and sup-
ports the theoretical analysis that has been
done previously.

Keywords: BECs, Thomas-Fermi, fluid ve-
locity

1 Introduction

Bose-Einstein condensates (BECs) are a
quantum state of dilute atomic gases of
weakly interacting bosons confined in an
external potential and cooled to tempera-
tures near absolute zero. The theory BECs
was initiated in 1924-1925 [5, 6] and it was
not experimentally observed in dilute atomic
gases until 1995 [2]. Ever since the first ob-
servation of the BEC was made by JILA
in 1995, it has been a very popular subject
to many theorists and experimentalist, and
it has been studied intensely. As in many
other systems, vortices could be formed in
the BECs. One could create vortices by en-
gineering the condensate with lasers or by
rapidly rotating the confining trap. Many
works have studied the dynamics of vortices
in BECs in detail and formulas describing
the approximative motion of the vortex have

been reported [17, 21, 9, 16, 1, 18, 11, 20].
The actual experiment done by JILA

was using two-component condensates of
atomic gas 87Rb [1]. In this computational
work, we study the vortex dynamics in one-
component BECs. For the comparison, var-
ious theories about the motion of the vortex
in BECs are evaluated. In Sec. 2 we describe
the equations of the motion of a vortex in a
BEC as well as the vortex profiles. In Sec.
3, the numerical techniques that are used to
perform the computational simulations are
introduced, and in Sec. 4, different external
potentials are introduced and the numerical
results of the vortex dynamics are compared
with the theory. Finally, we summarize the
results and give possible future work direc-
tions.

2 Equations of Motion

The most appropriate way to describe the
meanfield dynamics near absolute zero of
a BEC is the Gross-Pitaevskii equation
(GPE). The GPE gives a very good descrip-
tion of the dynamics in BECs. The generic
GPE describing the evolution of the conden-
sate wave function Ψ is:

i~
∂Ψ
∂t

= − ~2

2M
∇2Ψ + V (x, y, z)Ψ + g3D |Ψ|2 Ψ,

(1)

where ~ is the Planck’s constant, M is the
mass of the bosons, V (x, y, z) is the exter-
nal potential, and g3D = 4π~2a/M is the
coupling constant for the full 3-dimensional
GPE where a is the s-wave scattering length.

When the BEC density grows from 0 to
ρ over the distance ξ, the kinetic energy
(v ~2/2Mξ2) and the interaction energy
(v 4π~2aρ/M) become equal at the value
ξ = 1/

√
8aπρ and this ξ is named ‘healing

length’.
To simplify the computational simula-

tions, the GPE that is used for the actual



numerical simulations is:

i
∂Ψ
∂t

= −1
2
∇2Ψ + V (x, y)Ψ + g |Ψ|2 Ψ. (2)

When there is no external potential, Eq.
(2) becomes:

iΨt +
1
2
∇2Ψ− g|Ψ|2Ψ = 0. (3)

Now we consider the steady solution to the
GPE as:

Ψ(r, θ) = u(r)e−iµteiSθ, (4)

where S is the charge of the vortex (or vor-
ticity) and θ is the polar angle measure from
the center of the vortex. Changing Eu-
clidean coordinates to polar coordinates, the
Laplace operator transforms to:

∇2 =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2
. (5)

Using the Laplacian operator (5) in Eq. (3)
with the ansatz (4), the vortex profile equa-
tion is given by:

µu +
1
2

[
u′′ +

1
r
u′ − S2

r2
u

]
− gu3 = 0. (6)

This is a boundary value problem that has
no analytical closed solution and the bound-
ary conditions are u(0) = 0 and u′(∞) = 0.
However, an approximate solution can be
given in terms of tanh. Consequently, we
use u(r) = tanh(r) as an initial guess for the
solution. This ordinary differential equation
is solved using Matlab built-in BVP func-
tion. The initial guess and the solutions for
different charges are shown in Fig. 1.
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Figure 1: Vortex profiles for different vortex
charges. The x-axis is the polar length r and

the y-axis shows the vortex amplitude u = |Ψ|.

3 Numerical Analysis

For the numerical analysis, we start from the
steady state solution of the GPE. From the
modified 2-dimensional GPE (2) with the
kinetic term neglected (Thomas-Fermi ap-
proximation), the reduced form of the equa-
tion reads:

i
∂Ψ
∂t

= V (x, y)Ψ + g |Ψ|2 Ψ. (7)

By substituting the ansatz (4) into Eq. (7)
and simplifying, we obtain:

µu = V u + u3. (8)

From Eq. (8), we set the initial condition of
the wave function Ψ as:

Ψ0 =

√
max(µ− V, 0)

g
(9)

To seed a vortex, we change the radial
vortex profile u(r) into cartesian coordinates
u(x, y) and form a product of all terms: the
initial wave function Ψ0, the cartesian coor-
dinates vortex profile u(x, y), and the phase
term eiSθ. The final form of the wave func-
tion reads as following:

Ψ = Ψ0 · u(x, y) · eiSθ. (10)

With a magnetic trap as an external po-
tential, we use the Newton method to find
the (numerically) exact background profile.

Once the initial background is found,
to seed vortices on this background, the
vortex profile is multiplied to the initial
background. The vortex profile is in one-
dimensional radial (r) coordinates as shown
in Fig. 1. From this, on a set domain of X
and Y , we use the Matlab built-in function
spline to fit this radial profile into the two-
dimensional setup (to wrap around in 360
degrees on the xy-planal coordinates).

For the second order spatial differential
part of the GPE, the second order central
finite difference scheme is used. To integrate
the system in time, the 4th order Runge-
Kutta method is used. While integrating
the system for each time step, every prede-
termined number of steps a solution is saved
and the vorticity fitting is done. Using the



vorticity, the path of the vortex can be com-
puted. The vorticity is given in terms of the
fluid velocity.

~w = ∇× ~v, (11)

where v is the fluid velocity

~vfluid ≡
Ψ∇Ψ∗ −Ψ∗∇Ψ

i |Ψ|2
, (12)

where Ψ is the wave function of the system.
To compute this fluid velocity numerically,
one needs to modify the formula since where
the density of the wave function |Ψ|2 is zero,
the formula has zero in the denominator that
cannot be computed numerically. To avoid
having zero density in the denominator of
the fluid velocity (or to smooth the peak of
vorticity), we add a small numerical param-
eter δ in the denominator of Eq. (12):

~vfluid ≡
Ψ∇Ψ∗ −Ψ∗∇Ψ

i
(
|Ψ|2 + δ

) . (13)

With this smoothing parameter δ = 1.0, we
have the peak of vorticity less sharp and this
makes much convenient to do the best fitting
of the vorticity. This vorticity computation
is used to follow the vortex to study how the
vortex moves in a particular background.

4 Numerical Results and
Comparison

4.1 Vortices on Plane Potentials

For a plane potential, one can think of the
external potential to be flat and extending
infinitely. Consequently, the BEC steady
state density would be an infinite plane with
some slope. When the slope is zero and the
vortex is sitting at the center of the plane,
for there is no trigger to start the dynamics,
there is no movement of the vortex. How-
ever, if the plane is tilted at a certain angle
(we call this the slope of the potential), the
gradient of the background field will initiate
the dynamics of the vortex [13, 14, 10, 3], so
that the vortex moves perpendicular to the
gradient of the background field. In addition
to the effect from the gradient of the back-
ground field, the mirror images due to the
boundary conditions affect the vortex dy-
namics as well [11, 20].

4.1.1 Vortex Drift

To initiate the vortex dynamics, we start
with a tilted plane potential. Since the ini-
tiating factor is the gradient of the back-
ground field, as the angle of tilt increases,
the linear velocity of the vortex increases.
The analytical formula for this velocity is
obtained from Kivshar et al. [10] as:

k0n0
dr0

dz
=
(
−∇θb +

S

2
CJ∇lnIb

)∣∣∣∣
r=r0

,

(14)
where k0 is the free-space wave number, n0

is the linear refractive index, r0 is the center
coordinates of a vortex, θb is the phase of the
background field, S is the vortex charge (po-
larity), I0 is the intensity of the background
field, J is the matrix operation of rotation by
π/2, and C is a function of Ib. In the partic-
ular case of a Kerr medium, the coefficient
C has been derived in Ref. [10] as:

C = − ln

(
ceγ |∇ ln Ib|

4k0n0

√
2n2I0/n0

)
, (15)

with c ≈ 1.126 is a constant value numeri-
cally computed in Ref. [10], γ is the Euler’s
constant (γ ≈ 0.557), and n2 is the nonlinear
refractive index.

In order to compare the validity of Eq.
(14) with our computational results, a few
substitutions have been made to have an
equivalent system of equations as our modi-
fied GPE:

k0 = 1,
n0 = −1,
n2 = −1.

Figure 2: Vorticity plot of a vortex on a plane
potential with the slope m = 0.01. The initial
position of the vortex is (0,−15) and the final
position at time t = 1000 is at (0, 11.5187).
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Figure 3: Left: vortex velocity vs. slope of
plane potential. The slope varies from 0.0005

to 0.025. The plot shows the velocity that
depends linearly as the slope (see the linear fit
depicted by the solid line). Right: plot shows

the difference between the numerical result and
its linear fit.

For the computational simulations, we
start with the steady solution to the GPE
with the plane potential V = m·X, where m
represents the slope or tilt of the potential
plane. With this steady state solution, we
multiply the vortex profile to have a vortex
sitting on the plane background field. Since
the tilt is in X-direction, we expect to have a
movement of the vortex in Y -direction. If a
vortex is initially seeded at (0,−15) and the
slope of the plane potential is m = 0.01 (see
Fig. 2), the velocity of the vortex is com-
puted by doing the best fitted line to the
trajectory of the vortex and it is found to be
vN = 0.0266, while its theoretical value is
vT = 0.0282. The initial position of the vor-
tex for all our runs is (0,−15) and the size
of domain is X = (−50, 50). As for the first
comparison of the linear velocity of a BEC
vortex with a plane potential, we took var-
ied slopes from 0.001 to 0.01. The numerical
results are slightly less than the theoretical
results (from formula by Kivshar et al. [10]).
Using the numerical data and the theoretical
formula, a curve has been fitted to the data
giving a constant c value of 1.9656, while
the value from theoretical formula is 1.126.
For the second comparison of the linear ve-
locity of a BEC vortex with a plane poten-
tial, we took varied slopes from 0.01 to 0.025.
The numerical results were slightly less than
the theoretical results in the beginning, and
then the numerical results became greater
than the theoretical results (from formula
by Kivshar et al. [10]). Using numerical data
and the theoretical formula, a curve has been
fitted to the data giving a constant c value
of 0.78069. The numerical results are sim-
ilar to the theoretical results, but they are
not exactly the same. There is a factor c

in Kivshar’s formula, which was computed
by doing the numerical integration. By ap-
plying the least square analysis we obtain a
modified value for the c constant that bet-
ter fits our data. Nevertheless, the velocity
of a vortex depends linearly on the angle of
the plane potential and our numerical result
shows a proper linear dependency of the ve-
locity to its plane potential angle (see Figs.
3).

4.1.2 Vortex-Vortex Interaction

When there is no slope in the external
potential and having two vortices in one-
component BEC, the phase gradient initi-
ates the dynamics. Same charge (or same
vorticity) vortices move in a circular orbit-
ing motion; whereas, with opposite charge
they move in a line parallel to each other.
From this, we find the velocity of a vortex
induced by another vortex. In addition, the
velocity depends on the separation distance
between the vortices.

Figure 4: Vorticity plot of the same charge
vortex-vortex interaction in its absence of
background potential gradient. The initial
position of one vortex is at (0,−5) and the

initial position of the other vortex is at (0, 5).
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Figure 5: Same charge vortex-vortex
interactions at different separation distances
between two vortices. A log-log plot of the

angular velocity as a function of the separation
distance. As the separation distance between
two vortices changes from 4 to 40 the vortex

rotates at a faster rate.

In the case of same charge vortices, we
follow the trajectory of the vortex. From
this trajectory we compute the angle of ro-
tation using the atan2 function at each time.
The angle vs. time is fitted and the slope of
this line represents the angular velocity of
the vortex. An example of the same charge
vortex-vortex interaction is shown in Fig. 4.
Both vortices have charge of +1 and their
separation distance is 10. The size of do-
main is X = (−50, 50) with the spatial step
size dx = 0.4 and the time step size dt = 0.1.
By varying the separation distance between
these two vortices, we obtain different angu-
lar velocities. Fig. 5 shows the log-log plot of
the angular velocity vs. separation distance.

In the case of the opposite charge vor-
tices, the position of the vortices is fitted to
the best line and the slope of that line gives
the linear velocity of the vortices. An exam-
ple of the opposite charge vortex-vortex in-
teraction is shown in Fig. 6. One vortex has
charge of +1 and the other has charge of −1.
The separation distance is 10 with domain of
size X = (−50, 50). The spatial step size is
dx = 0.4 and the time step dt = 0.1. Differ-
ent separation distances between these two
vortices give different velocities as depicted
in Fig. 7.

Figure 6: Vorticity plot of the opposite charge
vortex-vortex interaction in the absence of the
external potential. The initial position of one
vortex is at (−15,−5) and the initial position

of the other vortex is at (−15, 5).
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Figure 7: Opposite charge vortex-vortex
interactions at different separation distances
between two vortices. A log-log plot of the

linear velocity as a function of the separation
distance. As the separation distance between
two vortices changes from 4 to 40 the vortex

moves at a faster rate.

4.2 Vortices on Magnetic Trap

The most interesting phenomena happen
with a vortex in a magnetic trap external
potential. Many formulas have been found
to describe the motion of the vortex in this
Thomas-Fermi (TF) cloud. Lundh et al. [11]
give a formula for the vortex dynamics in the
TF cloud that takes into account the gra-
dient of the background field and the mir-
ror image effect produced at the edge of the
condensed cloud. Consequently, the formula
has two parameters that affect the vortex dy-
namics: the frequency (i.e. strength) of the
trap ω and the distance of the vortex from
the center of the TF cloud r0. The angular
velocity Ω is:

Ω =
~

2MR2

(
1− r2

0

R2

)g(r0/R), (16)



with

g(x) = 2 ln
(

R

ξ

)
+
(

1
x4

)
ln(1−x2)+

1
x2

+2,

(17)
and the local healing length ξ is

ξ(r0) =
1√

8πu(r0)a
=

ξ0√
1− r2

0/R2
, (18)

where ~ is the Planck’s constant, R is the
TF radius R = (2µ/Mω2)1/2 where ω is the
trap frequency, M is the mass of bosons, and
r0 is the initial location of the vortex from
the center of the TF cloud. To have this for-
mula equilvalent to our system we set ~ = 1
and M = 1.
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Figure 8: Vortex precession in the TF cloud
with the trap frequency ω = 0.05. The

trajectory shows for each vortex precession for
the ratio r/R is from 0.1 to 0.7. As the initial
position of the vortex is close to the edge of TF

cloud, the angular velocity increases.

Another formula is found in Fetter et al.
[20] where it is assumed that the vortex is sit-
ting near the center of the TF cloud. Conse-
quently, the only parameter for this formula
is the frequency of a trap ω. The angular
velocity Ω is:

Ω = ∓3~ωxωy

4µ
ln

R

ξ
, (19)

where ~ is the Plank’s constant, µ is the
chemical potential (in our system, µ = 1),
R is the TF radius, ωx and ωy are the
trap frequencies along the x and y directions
respectively (they are equal in our system
ωx = ωy = ω), and ξ = ~/

√
2M2 is the heal-

ing length.
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Figure 9: A plot of comparison between the
numerical result and the theoretical results

when ω = 0.05. For each different trap
frequency (Ω = 0.2, 0.3, 0.4, and 0.5), the

angular velocity of the vortex is compared with
the theoretical prediction (see text) at varied

ratio of r/R. Since the formula by Fetter et al.
[20] does not depend on the initial position of
the vortex, it does not vary at different ratio

r/R (shown as a horizontal line). However, the
formula by Lundh et al. [11] depends on the
initial position of the vortex and it varies at

different ratio r/R.

As before, we start with the steady state
solution with a magnetic trap external po-

tential V =
1
2
ω2
(
X2 + Y 2

)
. After ‘clean-

ing’ the TF approximation using the New-
ton’s method, we seed a vortex some dis-
tance from the center at (0, Y0), where Y0 =
−fact ·RTF , RTF is the radius of TF cloud,
and fact is varied. One example of the re-
sulting precession induced by the magnetic
trap is shown in Fig. 8. This plot shows
the vortex precession for different initial po-
sitions when the frequency of the trap is
fixed at ω = 0.05. The parameters that are
controlled are the frequency of the trap ω
and the distance of the vortex from the cen-
ter, r. For different values of ω (ω = 0.02,
0.03, 0.04, and 0.05), we had several runs
for different distances from the center. The
distance of the vortex from the center was
recorded as the ratio of the distance of the
vortex from the center of the TF cloud and
the radius of the TF cloud fact = r/RTF and
the values of fact are 0.1, 0.15, 0.2, 1/3, and
0.7. As expected, due to the mirror image
effect, as a vortex goes near the boundary
(when fact is 1/3 or 0.7), the angular veloc-
ity increases.
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Figure 10: A plot of the comparison between
the numerical result and the theoretical results
when the ratio r/R = 0.2. For each ratio of the

initial position of the vortex and the size of
trap, r/R = 0.1, 0.15, 0.2, and 1/3, the angular

velocity of the vortex is compared with the
theoretical at different trap frequencies. Both

theoretical formulas depend on the trap
frequency; consequently, the angular velocity

varies depending on the trap frequency.

Once the angular velocities are found,
they are compared with the analytical for-
mulas such as Lundh et al. [11] and Fet-
ter et al. [20] (labeled as Lundh and Fetter
respectively). Plots of the comparison for
each value of ω are shown in Fig. 9. Our
computational angular velocities lie between
these two theoretical angular velocities as
expected since Lundh’s formula takes ac-
count of the mirror image effect and Fetter’s
formula does not. Furthermore, since Fet-
ter’s formula only depends on the frequency
of the trap, it has the same angular velocity
with varied ratio r/R; whereas, Lundh’s for-
mula gives the different angular velocity for
each different ratio. In addition to the com-
parison for each ω, plots of the comparison
for each fact ratio are shown in Fig. 10. Our
computational angular velocities lie between
these two theoretical angular velocities when
the ratio is relatively smaller, and then the
computational one is much closer to Fetter’s
formula.

5 Conclusions

On this paper, we have analyzed the vortex
dynamics in one-component Bose-Einstein
condensates (BECs) which shows a very
good agreement with the previous theoret-
ical analysis [11, 20, 10]. The formula
by Kivshar et al. [10] comes from optics

with numerically to-be-determined numeri-
cal constant value and coefficient. Our com-
putational analysis shows a proper linear re-
lationship between the vortex velocity and
the angle of tilt of the external plane po-
tential. For vortex-vortex interactions, the
numerical simulations confirm the theoret-
ical expectations such as the linear veloc-
ities for the opposite charge vortex-vortex
interaction and the angular velocities for
the same charge vortex-vortex interaction.
With a magnetic trap as an external po-
tential, we computed the angular velocity
of the vortex for different trap frequencies
and for different initial positions of the vor-
tex. By comparing two theoretical formu-
las by Lundh et al. [11] and Fetter et al.
[20], we showed that our numerical simu-
lation agrees with these theoretical formu-
las. The next step to this study will be the
computational analysis of vortex dynamics
in two-component BECs [4, 7, 15, 12, 8, 19].
For two-component BECs, we would need to
formulate the condensate with two coupled
Gross-Pitaevskii equations (GPEs). With
two coupled GPEs, we have intra-species
coupling constants within each component,
inter-species coupling constants between two
components, and linear coupling constants
between two components.
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