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Abstract - Cystic fibrosis is an inherited chronic disease that 
affects the lungs, digestive system and even circulatory system 
of CF patients. Understanding the CF patient’s lung and 
airway as an ecosystem is a novel and powerful point of view. 
There are many different microbes in CF lungs that no one 
has ever cultured and the chronically colonized CF airways 
represent a complex and diverse ecosystem. Once we 
understand the CF lung in terms of its community and 
evolutionary ecology, we can then better understand the 
disease progression and the influence of different treatments 
on CF patients. A complete mathematical model of CF would 
need equations that follow the concentrations of all different 
kinds of bacterial and phage species in each compartment. 
This type of encyclopedic model is impossible to build in one 
go, therefore we can start with simple models that only look at 
one phage-host interaction. As part of our modeling efforts, 
we expect to figure out which variables are the most important 
using the metagenomic data currently being prepared by San 
Diego State University’s Phage group. 

 

1  Introduction 
  Cystic fibrosis is an inherited chronic disease that 

affects the lungs, digestive system and even circulatory 
system of CF patients. Children with Cystic Fibrosis are all 
born with this disease; they carry a defective gene that causes 
the body to produce unusually thick, sticky mucus that leads 
to clogging their lungs and thereby making it susceptible to 
lung infections. It also obstructs the pancreas and stops natural 
enzymes from helping the body break down and absorb food.  
These exacerbations are characterized by dyspnea (difficulty 
in breathing), cough, sputum production and occasionally 
hemoptysis. The treatment of cystic fibrosis focuses on 
eradicating the early infections of Pseudomonas spp. or 
controlling established airway infections with the goals of 
relieving the symptoms of airflow obstruction. 

 

Understanding the CF patient’s lung and airway as 
an ecosystem is a novel and powerful point of view. There are 
many different microbes in CF lungs that no one has ever 
cultured and the chronically colonized CF airways represent a 
complex and diverse ecosystem [4]. Once we understand the 
CF lung in terms of its community and evolutionary ecology 
we can then better understand the disease progression and the 
influence of different treatments on CF patients. Approaching 

the CF chronic airway infection as a community that follows 
specific ecological principles will allow us to find out 
whether there are better times to introduce specific antibiotics 
or whether this therapy should be cycled and if so at what 
periods should such cycling occur?  

 Currently, therapy includes the use of 
bronchodilators and anti-inflammatory agents. Antibiotic 
therapy is critical for eradicating early airway microbial 
colonization and controlling established airway infections. 
Patients with exacerbations of airway infections are typically 
treated with systemic antibiotic therapy. Despite very 
aggressive treatment, the median age of survival is 
approximately 38 years [4].   

 
One of the most effective CF treatments is to control 

the food web components so that we disrupt the unhealthy 
balance of this ecosystem with minimal damage to the lungs. 
In any ecological system there are two main controls, top 
down and bottom up. The top down control refers to when a 
top predator controls the structure/population dynamics of the 
ecosystem. The bottom up control in ecosystems refers to 
ecosystems in which the nutrient supply and productivity 
control the ecosystem structure. In Cystic fibrosis the two 
controls play an important role in improving treatments. 
Microbial growth in CF lungs depends on both the nutrients 
and the predators. Active bacteria thrive on all the possible 
substrates in CF lungs. These substrates could consist of dead 
bacteria and all sorts of debris. On the other hand the immune 
system and phage will exert top down control.  
  

2 Phage-bacteria interaction models  

        In this paper a few mathematical models of phage-
bacteria coexistence are reviewed and their suitability for 
modeling CF biomes is assessed. In some of these models we 
refer to  two groups or compartments of bacteria : inactive and 
active.  Inactive bacteria do not multiply due to lack of 
nutrients and are not subject to infection by phage. Active 
bacteria thrive on organic matter, multiply and are infected by 
phage.  
 
They go through lysis and migrate between compartments. In 
addition to following active and inactive bacterial populations, 
the models also describe the phage population. Once phages 
are assembled inside their hosts, cell lysis occurs causing a 



release of new phages. The number of released phages of one 
infected cell is the burst size and the time spent between 
adsorption and release of phages is called the latent period. 
Viral lysis is a major cause of bacterial mortality. On average 
10 to 20 percent of the bacterial production is lysed daily by 
viruses [3]. This contributes greatly to the buildup of debris in 
the CF lungs and is the main reason phage have great impact 
on both mortality and production of bacteria. 
 

A complete mathematical model of CF would need 
equations that follow the concentrations of all different kinds 
of  bacterial and phage species in each compartment. That 
means we should have different equations that can represent 
all different microorganisms that can be found in CF patients’ 
lungs, airways, intestine as well as circulatory system and 
pancreas. This type of encyclopedic model is impossible to 
build in one go, therefore we can start with simple models that 
only look at one phage-host interaction. The choice of good 
model requires finding the important controlling variables in 
the set of equations. As part of our modeling efforts, we 
expect to figure out which variables are the most important 
using the metagenomic data currently being prepared by San 
Diego State University’s Phage group. Metagenomic methods 
collect and analyze genetic material recovered directly from 
environmental samples. 
 
 By surveying literature about predator-prey models of 
Phage-host interactions we found a number of papers that 
present mathematical models of phage-bacterial interaction. 
In the absence of abundant data from CF patients, these 
models are the only possible models that we can implement 
and analyze. In addition we need to consider the fact that 
none of these already formulated models were formulated 
specifically for the Cystic fibrosis ecosystem but instead were 
all intended to model different microbiomes.   

 

2.1    Lotka-Voltera model 
 Lotka-Voltera Model is a simplified model of a phage-host 
ecosystem that represents the relationship between bacterial 
population size (S) and the phage population (P). The 
equations below are for a generalized Lotka-Volterra model. 
 
 
Growth Rate   Reproduction        Phage Predation 
  of Bacteria            

 
 
 
Growth Rate   Decay             Phage Production 
     of Phage            

 
  
In Lotka-Voltera modeling of phage-host communities, the 
bacterial dynamics undergo intrinsic growth and decay cycles 

due to the interaction with the phage. As a result, both 
populations oscillate in time. The bacterial population size S 
depends on both microbial reproduction and phage predation. 
The phage population grows as it interacts with the bacteria 
and has an algebraic decay when no bacteria are present. In 
above equations r, κ, γ, β represent constants for bacterial 
growth, phage infection rate, phage decay, and phage 
production through lysed bacteria, respectively [5]. This 
model has interesting implications that can be helpful in 
certain medical research such as predicting the cycling of the 
microbial and phage populations. Consider using phage (or 
similar therapy) to reduce the total number of bacteria. In this 
case timing would be an important factor  to consider.  For the 
Lotka-Volterra model, once we inject phage it will have a 
large effect on the system. The largest effect on the dynamics 
is achieved by suddenly infusing the phage at once. 
            

 
              Figure (1a)                  Figure (1b)                
 
         
 

 
           Figure (2a)                        Figure (2b) 
 
Figure (1a) and (2a) represent the concentration of bacteria 
and phage as a function of time in two stages, before and after 
the injection of phage that is represented here by a vertical 
line. In addition figures (1b) and (2b) represent the phage 
counts versus bacteria counts before (blue color) and after 
(black color) the injections respectively. The difference 
between these two pairs is the time at which the phage was 
injected into the system. As we see in figure (1a) the phage 
predator was injected to the system at the peak bacterial 
community size versus in figure (2a) where the injection took 



place when bacterial population size was at its lowest point. 
As a result, the injection at peak time caused the microbial 
cycling to grow while injecting phage at lowest bacterial 
population size decreased the overall bacterial cycling. This 
illustrates how timing can have an effect on certain therapies. 
In Cyctic Fibrosis our goal is to conduct the therapy in a way 
that lead to a decrease in the overall bacterial population as 
well as the resulting phage response. Basic Lotka-Volterra 
models are likely to be too simple to be considered for the 
behavior of the predator-prey interactions in a CF lung. 
Therefore we would need more complex models that can 
describe the complex, chronically infected airways of 
cystic fibrosis patients more precisely. 

 
Figure (3) Phage-bacteria interaction 

 
  
2.2 Two compartment model of phage-
bacteria interaction 

Figure (3) represents the simulation of above model as it 
depicts, an increase in active bacteria population is followed 
by an increase of its phage. The number of phage increases 
when there are high amount of bacteria, this leads to a 
decrease of bacteria population that eventually leads to a drop 
in phage population due to lack of prey. 

 The next model presents the phage-bacteria coexistence 
in marine environment where the bacteria population is 
divided into two compartments, inactive and active [5]. The 
model consists of three ordinary non-linear delay differential 
equations that describe the growth rate of susceptible (active) 
bacteria, phage and inactive bacteria respectively.  First 
equation represents the growth rate of susceptible bacteria and 
there is a logistic factor to account for a limited supply of 
substances.  In the same equation the phage predation has 
been directly subtracted from the bacteria growth. In addition 
to that there are the two migration terms between N (inactive) 
and B (active) population that are present in the growth 
equation. The V equation includes a phage decay term, 
phage-bacteria adsorption factor and a production term of 
lysing after a time delay.  Last equation  represent the growth 
rate for inactive bacteria which do not have any interaction 
with phage so their growth equation only consist of grazing 
factor and bacterial migration terms. 

 
2.3  Modeling bacteriophage infection 
with latency period 

The next model [1] uses three time-delay differential 
equations that represent the interaction between susceptible 
and infected bacteria, S and I, with phage viruses, P. Using the 
law of mass action the rate of infection is K P (t) S(t), where 
K is the effective per bacteria phage absorption constant rate 
and P(t) and S(t) represent the number of viruses and 
susceptible bacteria per liter respectively. Using a logistic 
growth model we can represent the rate of change in number 
of susceptible bacteria using the first equation listed below. 
The second equation represents the change in concentration 
for infected bacteria. Since infected bacteria may have 
different causes of mortality than just viral lysis, e.g. 
protozoan and immune cell grazing, there is a constant death 
rate of iµ in the equation. The third term of the infected 
bacteria equation represents the number of deaths of  infected 
bacteria at time t, that were infected by phage at time t-T, 
where T represents the latency time.  The last equation 
provides the rate of change of phage concentration in this 
simple ecosystem.  Beta represents the constant input of free 
phage from the surrounding environment. The rate of lysis of 
infected bacteria at time t was represented as   

. Since each infected bacteria 
delivers “b” phage after lysis, that leaves the input rate of 
phage at time t to be e  
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 In the above model, one of the most important 

variables in the sense that its value has a dramatic effect on 
the system’s behavior is the “effective per bacteria phage 

 
 



absorption constant rate K. In this sense, K is a controlling 
variable in our set of differential equations. This is illustrated 
in the following four figures showing simulations from this 
mode using different values of K. 

• M is the decay rate of free phage  
          

 

 

 

Figure (7) Bacteria-Phage In Cheese Industry 
 
As shown in this figure, the phage concentration goes toward 
negative values. This shows the failure of the above model.  
Perhaps the model had incorrect assumptions concerning the 
interaction between bacteria and bacteriophage as well as 
possible errors in estimating the model parameters. 
 
 3  Conclusion  

 In conclusion, we argued that mathematical models 
of Cystic fibrosis viewed as a microbial ecosystem offer 
possible routes to the identification of controlling variables 
and eventually a tool for studying the effect of treatment 
regimens. Metagenomic data from the sputum of CF patients 
will enable informed selection of terms to use in the equations 
employed by these models and allow us to formulate and 
validate better models. 

 
By comparing these figures we can observe the fact that, the 
higher the interaction rate between phage and bacteria, the 
higher the rate of phage production is going to be. In Figure 
(4) where the rate of interaction is half as large as in Figure 
(5), the phage production curve gets into a stable stage after 
about 50 seconds.  
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