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Abstract: Analysis of Competing Hypoth-
esis, a method for evaluating explanations of
observed evidence, is used in numerous fields
including counterterrorism, psychology, and
intelligence analysis. We propose a Bayesian
extension of the methodology, posing the
problem in terms of a multinomial-Dirichlet
hierarchical model. The yet-to-be observed
true hypothesis is regarded as a multinomial
random variable and the evaluation of the
evidence is treated as a structured elicita-
tion of a prior distribution on the probabili-
ties of the hypotheses. This model provides
the user with measures of uncertainty for
the probabilities of the hypotheses. We dis-
cuss inference such as point and interval es-
timates of hypothesis probabilities, ratios of
hypothesis probabilities, and Bayes factors.
A simple example involving the stadium re-
location of the San Diego Chargers is used to
illustrate the method. We also present sev-
eral extensions of the model that enable it
to handle special types of evidence including
evidence that is irrelevant to one or more hy-
potheses, evidence against hypotheses, and
evidence that is subject to deception.

Keywords: Analysis of competing hypothe-
ses, Bayesian updating, data fusion, uncer-
tainty

1 Introduction

Analysis of competing hypotheses (ACH) is
a method for systematically comparing the
likelihoods of competing hypotheses based
on the available evidence. Richards Heuer
[4] developed the procedure for the CIA in
the 1970s, primarily for use in intelligence
matters. Heuer’s work did not provide a
mathematical basis for drawing conclusions,
though he did note that formalizing the pro-
cess would be desirable. A software pro-
gram from PARC [6] attempts to make ACH
quantitative by reporting an inconsistency
score for each hypothesis. Paté-Cornell [7]

and McLaughlin [5] both present a Bayesian
method for updating beliefs in hypotheses as
evidence is obtained. The model we present
here is richer than that presented in Paté-
Cornell, though it is based on a similar idea.

2 Multinomial-Dirichlet
Hierarchical Model

The multinomial-Dirichlet model is a gen-
eralization of the beta-binomial model in
which there are N categories rather than
the two categories success and failure. A
draw from a multinomial distribution is rep-
resented by a vector x = (x1, x2, . . . , xN ),
where each xj is the count of observa-
tions that fall into category j. Let p =
(p1, p2, . . . , pN ) denote the probabilities of
belonging to the N categories so that∑N

j=1 pj = 1 and let n =
∑N

j=1 xj .
A Dirichlet distribution is placed on p,

the category probabilities of the multinomial
distribution. The parameter for the Dirich-
let distribution is α = (α1, α2, . . . , αN ), a
vector with nonnegative entries. Letting
α0 =

∑N
j=1 αj , the marginal distribution of

each pj is a beta distribution.
The multinomial and Dirichlet distribu-

tions are conjugate to one another, mean-
ing that when we start with a Dirichlet
prior distribution on the category probabil-
ities and update our knowledge with multi-
nomial data, the resulting posterior distribu-
tion on the category (or hypothesis) proba-
bilities is Dirichlet. Specifically, when the
prior distribution on p is Dirichlet(α), and
multinomial data x is observed, the posterior
distribution on p, conditioned on this data,
is Dirichlet(α1 + x1, α2 + x2, . . . , αN + xN ).

To pose ACH in terms of multinomial
and Dirichlet distributions, we consider the
final outcome, or determination of the true
hypothesis to be a single draw from a multi-
nomial distribution. Evaluating the evi-
dence provides information about p, the
parameter of this multinomial distribution,



which gives the probabilities of the hypothe-
ses.

2.1 Algorithm

The algorithm for implementing our proce-
dure is as follows;

1. Construct the framework for the ACH
matrix. List hypotheses, Hj , j =
1, . . . , N as column headings and ev-
idence items, Ei, i = 1, . . .M as
row headings. Include prior beliefs or
“other evidence” as the first evidence
item.

2. Assign evidence weights. Determine
the equivalent prior sample size (ness)
of the evidence as a whole. Assign
weights, wi, to the evidence items in-
dicating their strength or relative im-
portance. Scale these weights so that∑M

i=1 wi = ness.

3. Relate evidence to hypotheses. Pro-
ceeding one row at a time, rate the rel-
ative likelihood of Ei conditioned on
each hypothesis by filling in the ma-
trix with values xij . One may begin
by assigning xil = 1 where Hl is the
hypothesis under which we are least
likely to observe Ei. Continue by as-
signing the other xij values relative to
xil. If Ei is twice as likely to be ob-
served when Hj is true compared to
when Hl is true, then xij = 2. After
the initial assignment, scale these val-
ues so that

∑N
j=1 xij = wi.

4. Compute the posterior. The posterior
distribution of p, the probabilities of
the hypotheses, is Dirichlet with pa-
rameter α given by αj =

∑M
i=1 xij , for

j = 1, . . . , N . The marginal posterior
distributions of the individual pj pa-
rameters are beta(αj , α0 − αj).

Step 1 corresponds to steps 1, 2, and 3 of
Heuer’s method. Step 2 is a formalization of
Heuer’s call to “Analyze the diagnosticity of
the evidence and arguments”. The method
of assigning xij values in Step 3 is posed as
in McLaughlin [5], though we note here that
0 values are permitted for xij . An alterna-
tive way to elicit xij values is to interpret it
as the number of “observations” of Hj with

which Ei can be associated. Written out for-
mally, we have

y ∼ Multinomial(1,p)
p ∼ Dirichlet(α)

αj =
M∑
i=1

xij j = 1..N, (1)

where y is the outcome we are trying to pre-
dict.

2.2 Inference

All inference is conducted using the poste-
rior distribution. The mean of the posterior
Dirichlet(α) distribution is

p̂ =
(
α1

α0
, . . . ,

αN

α0

)
.

Interval estimates provide a measure of
uncertainty for the point estimates above,
but numerical methods are required to find
quantiles of beta and Dirichlet distributions.
A 95% equal-tail credible set for a single
probability pj is obtained by finding the .025
and .975 quantiles of the beta(αj , α0 − αj)
distribution. Highest posterior density sets
[2] will be slightly narrower than the equal-
tail sets. The width of these interval esti-
mates is strongly affected by the choice of
ness.

3 Extensions

The multinomial-Dirichlet ACH model, as
presented thus far yields a Dirichlet poste-
rior distribution on the hypotheses that is
easy to compute and easy to use for con-
ducting inference. However, it is missing the
ability to handle items that give evidence
against one or more hypotheses, items that
are not relevant to all hypotheses, and items
which may be subject to deception. Unfor-
tunately these extensions result in posterior
distributions that are not Dirichlet and this
loss of conjugacy makes inference more diffi-
cult. The use of Monte Carlo methods, how-
ever, makes inference computationally feasi-
ble, and samples from the posterior can be
obtained fairly quickly.

3.1 Evidence Against

Evidence against hypothesis Hk is expressed
as seeing observations that do not fall into



category k. In a beta-binomial setting,
where there is only one category that is “not
Hk”, this is easy to handle. In a Dirichlet
model, the observations need to be allocated
amongst all the categories that are “not Hk”
without changing the relative probabilities of
these other hypotheses and without chang-
ing our certainty about the relative probabil-
ities of these other hypotheses. This is ac-
complished by treating the evidence against
as a binomial random variable with proba-
bility of success 1−pk. We know the observa-
tions belong to the “not Hk” categories, but
we do not know how many observations fall
into each. If an evidence item Ei is against
a set of hypotheses, rather than just a sin-
gle hypothesis Hk, it is “for” the comple-
ment of this set which we will refer to as Fi.
Then the evidence is treated as a binomial
random variable with probability of success∑

j∈Fi
pj .

Let our current knowledge of p be given
by a proper prior distribution π(p), and let
Ei provide evidence for a set of hypotheses
Fi, with the strength of this evidence repre-
sented by wi. Then, the posterior distribu-
tion for p, updated with Ei is given by

π(p|Ei) ∝

∑
j∈Fi

pj

wi

π(p). (2)

In practice, an analyst would input plus and
minus signs in the matrix to indicate evi-
dence for and against hypotheses and use wi

to represent
∑

j∈Fi
xij .

3.2 Irrelevance

When a piece of evidence is irrelevant to hy-
pothesis Hk, it is as though the data associ-
ated with Hk is missing. It is not appropri-
ate to assign xik = 0 when Ei is not relevant
to Hk as this would reduce the likelihood of
Hk relative to the other hypotheses when it
should be held constant.

Let our current knowledge of p again be
given by the distribution π(p), and let Ei be
relevant only to hypotheses in Ri. Then, the
posterior distribution for p, updated with Ei

is

π(p|Ei) ∝

 ∏
j∈Ri

p
xij

j∑
k∈Ri

pk

π(p). (3)

This posterior distribution is guaranteed to
be proper if the prior distribution is proper.

3.3 Combining Different Types
of Evidence

When a user decides to enter an evidence
item as either for, against, or irrelevant to a
hypothesis, the posterior distribution for p
is no longer in closed form. In order to ex-
press the posterior, we partition the evidence
by type into three sets. Evidence items with
only numerical values will belong to set A.
Evidence items that contain irrelevant hy-
potheses (NA’s) will be labeled as set B. Ev-
idence items that are just for (+) and against
(-) will belong to set C. Items that contain
both an NA, and + or - will be placed into
set C. Evidence in set C may not contain
numeric values.

Using Equations (1),(2), and (3) the pos-
terior distribution for any set of evidence is
given by

π(p|E) ∝
∏
i∈A

N∏
j=1

p
xij

j

×
∏
i∈B

∏
j∈Ri

p
xij

j∑
k∈Ri

pk
×
∏
i∈C

∑
j∈Fi

pj

wi

(4)
where N is the number of hypotheses, Ri is
the set of relevant hypotheses for evidence
item i, Fi is the set of hypotheses that item
i provides evidence for (+), and wi is the
scaled weight for evidence item i. Impor-
tance sampling is used to sample from the
distribution.

3.4 Stadium Example with
Extensions

The city of San Diego in 2006 declined to
provide the owners of the San Diego Charg-
ers football team with the support they were
seeking to build a new stadium and rede-
velop the site of Qualcomm Stadium. The
Chargers organization then stated that they
will definitely be moving from Qualcomm
Stadium, with their contract requiring them
to stay only through the end of the 2008
season. Other cities in the Southwest such
as Las Vegas and San Antonio have been
proposed as new locations for the Chargers.
However, the Chargers have stated that they
would like to stay in the San Diego area and
have considered several other sites in San
Diego County; Oceanside, National City,



and Chula Vista. National City dropped
from the running in the spring of 2007.
In this section we apply the multinomial-
Dirichlet ACH model to the problem of pre-
dicting the new stadium site for the Chargers
based on available evidence. The evidence
was obtained from news articles in the San
Diego Union Tribune through the spring of
2007. The three hypotheses are Oceanside,
Chula Vista, and Other.

Table 1 shows the scaled input of an
analyst who used the extensions proposed.
ness was again chosen to be 10. There are
four evidence items with complete numeric
values belonging to set A (E3, E5, E6, E7),
one with an irrelevant hypothesis belong-
ing to set B (E4), and one with evidence
for and against belonging to set C (E2).
The posterior distribution for p is π(p|E) ∝
p3.45
1 p3.02

2 p1.53
3 (p1 + p2).

Computing
∑

i∈A xij , the column sums
for evidence items in A, gives α =
(2.78, 2.69, 1.53). Next, we update α with
evidence in B to obtain α∗. E4 =
(.67, .33, NA) gives the updated value α∗ =
(3.30, 2.95, 1.75). Finally, we update α∗ with
evidence in C to obtain α∗∗. E2 = (+,+,−)
gives α∗∗ = (4.36, 3.89, 1.75).

We now have a close Dirichlet distribu-
tion to use as an importance function for im-
portance sampling. Table 2 summarizes the
results of the posterior containing estimates
of the mean, 95% HPD intervals, and pmax

with a Monte Carlo sample size of 100, 000.
Figure 1 displays the true marginal posteri-
ors along with the importance function. Re-
sults are quite similar to the previous as-
signment of matrix values, with Oceanside
having a slightly higher posterior mean in
this assignment. Since either of these spe-
cial types of evidence can be interpreted as
missing data, there will generally be more
variance in the posterior distribution when
“NA”, ”+”, and “-” are used than when all
matrix entries are numeric.

3.5 Deception

A third type of evidence that can be in-
corporated into this model is evidence with
the potential for deception. The analyst can
assign θi values which indicate the proba-
bility of deception, or continue to add hy-
perpriors to the set-up, perhaps placing a
beta distribution on the θi. Once again, the

posterior distribution cannot be obtained in
closed form, but Monte Carlo methods make
inference possible.

4 Discussion

The aim of this paper was to give a prob-
abilistic framework for ACH that is sophis-
ticated enough to provide measures of cer-
tainty while at the same time providing a
simple interface and easy to interpret out-
put for users who may not have a great deal
of training in probability theory. We did
not delve into the psychology of reasoning
or human logic, seeking only to give a statis-
tical formalization of an existing method for
assessing evidence. Our approach involves
viewing ACH as a structured elicitation of
a prior distribution by equating evidence to
multinomial observations.

The ability to weight evidence items by
importance or diagnosticity is a great advan-
tage of our model over simpler approaches
such Paté-Cornell’s. In the simpler set-up,
updating with a single signal or evidence
item E results in the same posterior distribu-
tion on the hypotheses whether the prior for
H is noninformative or based on hundreds
of other evidence items.

We admit that the assignment of weights
to hypotheses can seem overly subjective as
can the assignment of an equivalent sam-
ple size ness. One can always examine the
sensitivity of conclusions to these choices,
though care should be taken that these pa-
rameters are not manipulated to obtain a
preconceived conclusion. Weed [9] provides
a review of the concept of “weight of evi-
dence”.

We conclude with a comment on diagnos-
ticity and discrimination. Some ACH guides
call for discarding evidence with little diag-
nostic power. Heuer refers to the diagnostic-
ity of a piece of evidence as its helpfulness
in judging the relative likelihoods of the hy-
potheses. Unfortunately, this can be misin-
terpreted to mean that an item of evidence
should be discarded if it does not help you
choose one hypothesis or set of hypotheses
over another hypothesis or set of hypothe-
ses; i.e. if it does not push the probabilities
of the hypotheses closer to 0 and 1. Such
a piece of evidence does not help to dis-
criminate between hypotheses, but it may
still be diagnostic. When measuring the un-



certainty of our estimates, we want to in-
clude relevant evidence even if it tells us that
the relative likelihoods of two hypotheses be-
come closer to one another. Excluding non-
discriminatory evidence will likely result in
higher likelihood ratios for hypotheses. This
is analogous to the problem arising from
medical journals that only publish papers
with results significant at the .05 level. Can-
vassing journals to perform meta-analysis on

like studies results in overestimating treat-
ment effects because studies with insignif-
icant effects are excluded. Heuer cites psy-
chological studies in which experts’ certainty
in their evaluations becomes higher with
more evidence even though the quality of
their evaluations remains the same. Includ-
ing all relevant evidence, regardless of its dis-
criminatory power could mediate this effect.

w Oceanside Chula Vista Other
E1: Prior beliefs or unlisted evidence 0.0
E2: Chargers say they want to stay in San Diego 2.0 + + -
E3: Chargers want financial assistance (any city) 2.5 0.75 0.25 1.50
E4: Chargers like parking and transit in Oceanside 1.0 0.67 0.33 NA
E5: San Diego State University wants to be involved 0.5 0.14 0.35 0.01
E6: Chargers paid $200K to study sites in Chula Vista 2.0 0.09 1.90 0.01
E7: Oceanside council set aside $100K for consultants 2.0 1.80 0.19 0.01

Table 1: ACH Matrix for Stadium Example with Extensions

Mean Interval pmax

OC 0.442 (0.156, 0.726) 0.535
CV 0.388 (0.120, 0.675) 0.406
Other 0.170 (0.004, 0.397) 0.059

Table 2: Results for Extensions Example

0.0 0.2 0.4 0.6 0.8 1.0

0
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Figure 1: Marginal Posterior Distributions for
p and Proposal Densities
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