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Abstract: We study the effects of multi-
plicative noise on a spatio-temporal pattern
forming nonlinear Partial Differential Equa-
tion (PDE) model for premixed flame insta-
bility, known as the Kuramoto-Sivashinsky
equation, in a circular domain. Modifica-
tions of a previously developed numerical in-
tegration scheme allow for longer time in-
tegration in the presence of noise. In or-
der to gain additional insight, we focus on
a region of parameter space where hopping
patterns of the deterministic system arise as
well as the region of parameter space where
the transition between a single ring to mul-
tiple rings of cells appears. We discuss the
numerical challenges in the integration of
the Kuramoto-Sivashinsky equation in polar
coordinates with the addition of the noise
term. We also study the effects of additive
and multiplicative noise on the normal forms
or amplitude equations that describe the dy-
namics of hopping patterns. Finally we show
some results of the implementation of the
numerical scheme to solve both the PDE and
the normal form equations and discuss pre-
liminary findings.
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1 Introduction

Patterns are found everywhere in nature and
can occur in chemical, physical and biolog-
ical systems. Pattern formation is a phe-
nomenon that has been studied for decades
and its analysis very often consists of find-
ing a differential equation that models the
space and time evolution of the pattern and
coherent structures that lead to their for-
mation. In the particular case of cellular
patterns, the coherent structures are driven

by symmetry breaking bifurcations, which
play a main role in determining the family
of structures that can be observed. More-
over, the presence of different types of noise
in physical systems has been shown to af-
fect the symmetry breaking bifurcation pro-
cess. The purpose of our research is the
study of different mechanisms that lead to
various types of cellular flame patterns. In
this work we explore the effects of multi-
plicative noise in a pattern forming system
with two dimensional orthogonal symmetry,
O(2)-symmetry, specifically we focus our at-
tention on the effects on hopping patterns
which are modulated rotating waves that
emerge via a co-dimension three steadystate
bifurcation.

2 The Mathematical Model

As mentioned in the introduction, the study
of pattern formation often starts with a PDE
or ODE that serves as model for the sys-
tem of study. In our case this model is the
Kuramoto-Sivashinsky equation (KS) which
is a PDE that describes the spatiotemporal
evolution of a flame front of premixed flames
[7]. For our current research, we use the fol-
lowing form of the KS equation:

∂u

∂t
= η1u− (1+∇2)2u− η2(∇u)2−η3u

3

+ξ1(x, t)u + ξ2(x, t),

where u = u(x, t) represents the perturba-
tion of the planar front (typically assumed
to be a flame front) in the direction of prop-
agation, η1 measures the strength of the per-
turbation force, η2 is a parameter associ-
ated with growth in the direction normal to
the domain, the term η3 is added to tem-
per the bifurcation behavior of the system.
The term ξ1(x, t)u was added to model the



effect of parametric noise or multiplicative
noise and the term ξ2(x, t) was added in [5]
to model the effect of additive noise. Both
terms ξ1(x, t)u and ξ2(x, t) represents Gaus-
sian white noise and is assumed to be dis-
tributed with zero mean and uncorrelated
over space and time.

3 Integration of the KS equation

The numerical scheme used to integrate the
KS equation is an extension of the work pre-
sented in [1]. This scheme uses the Dis-
tributed Approximating Functionals (DAFs)
to achieve highly accurate spatial deriva-
tives through a scheme based on the Crank-
Nicolson method for the evolution over time.
The domain is circular so that we can com-
pare with related experiments conducted on
circular burners. For convenience the KS
equation is then converted to polar coordi-
nates. In addition, the system is discretized
in a grid with 32 point in the radial direc-
tion and 64 in the azimuthal direction (2048
total) (see Figure 1 ). In order to numeri-
cally solve the nonlinearity, the scheme em-
ploys Newton iteration in each time-step, in
which the resulting sequence of linear sys-
tems is solved using the preconditioned Bi-
CGSTAB method and when it fails to con-
verge uses the LU decomposition to solve the
aforementioned linear systems.
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Figure 1: The Polar grid. The innermost points
are located at a radius r = dr

2
therefore the

center is left out due to the singularity at
r = 0.The radial spacing is dr. The size of our

grid is 32 radial points, and 64 azimuthal
points, i.e, dr = R

32.5
and φ = 2π

64
.

4 Numerical Challenges of the
Integration

It is documented in [1] that the numerical
investigation of the KS equation had been
very difficult due to the singularity that
arises in the biharmonic operator: ∇4 =
[∂rr + 2( 1

r )∂r + ( 1
r2 )∂φφ]2 near the origin of

the polar grid. Although this singularity can
be avoided by partitioning the each diam-
eter into an even of equally spaced lattice
points, as is shown in Figure 1, the pres-
ence of very small denominators at points
close to origin such as in the term ( 1

r4 )∂φφφφ,
make the resulting system extremely ill con-
ditioned and sensitive to error in the spatial
derivatives. This problem was mitigated by
the use of both the DAFs approximation for
the spatial derivatives and the scheme based
on Crank-Nicolson method for the tempo-
ral approximation allowing long-term inte-
gration. However, the inclusion of the mul-
tiplicative noise term caused the integration
to fail for some combinations of radius and
noise intensity. After carefully reviewing
the algorithm, we realized that the portion
of the integration that was failing was the
solution of the linear system using the Bi-
CGSTAB method. We improve the integra-
tion by solving the system of equations using
a direct method (LU decomposition) when
the Bi-CGSTAB method fails.

5 Results of the integration of
the KS Eqaution

We were able to successfully include a mul-
tiplicative noise term in the Kuramoto-
Sivashinsky equation and modify the algo-
rithm described in [1] and [5] to allow the
integration of aforementioned equation. The
parameters (η1, η2, η3) = (0.32, 1.00, 0.017)
were held constant whereas the radius of the
burner and the intensity of the noise varied.

5.1 Multiple ring transition

The transition between a single ring to mul-
tiple rings of cells happens for the range of
radii from r = 8.50 to r = 9.00. Figure 2
shows a representative sample of two station-
ary states with a single ring and two station-
ary states with double-ring structure. We
were able to uncover that the transition goes



from 5 cells in a single ring to 5 cells in an
outer ring and a single cell in an inner ring.
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Figure 2: Multiple rings patterns found in the
range from R = 8.50 to 9.00 and multiplicative

noise intensity of 0.200.

5.2 Hopping patterns

A hopping state can be described as a pat-
tern in which individual cells sequentially
make abrupt changes in their angular posi-
tion while they keep rotating in a ring struc-
ture (see Figure 4). We focused on the range
of radii from 7.7400 to 7.7495 becuase was in
this interval where hopping cellular patterns
were observed for the first time in a simu-
lation [2]. We thought this was the logical
next level of complexity to study. We found
that as we increase the intensity of the mul-
tiplicative noise, the radius’ interval where
the hopping pattern is observed decreases
and the cells tend toward a rigid rotation,
where each of the 3 cells have different shape.
We completed a study (see Figure 3) where
the above statement is illustrated. Some of
the results can be seen in Figure 4 where we
show the time evolution of the pattern in the
absence of noise and the time evolution of
the pattern under multiplicative noise with
a noise intensity of 0.35.

��������� �� 	
����
� ���� ��������� ���� ���� ���� ���� ���� ���� ���������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� �������� �� �� �� �� �� �� �� ���� � ����� ���
��� �� � ����� �!!�� 
Figure 3: Behavior of the hopping pattern

under multiplicative noise for different radii
and noise intensities.
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Figure 4: Evolution of the Hopping pattern.
The top set of snapshots correspond to

R = 7.7415 and noise intensity = 0.0 and the
bottom set corresponds to R = 7.7415 and

noise intensity = 0.35 .



6 Normal Forms

The center manifold theorem states that the
full dynamics of a nonlinear model can be re-
duced to the center manifold near a bifurca-
tion point. The dynamics on the center man-
ifold is described by normal forms or ampli-
tude equations, which are universal, i.e., all
systems showing certain bifurcation have the
same dynamics on the center manifold [4].
The amplitude equations can be expressed
in terms of the parameters of the original
system by devising a mapping to the cen-
ter manifold of the wave vector space. This
reduces the dimensionality of the problem
from the dimension of the phase space (de-
scribed by PDEs) to that of the center man-
ifold (described by ODEs)[6]. In summary,
the main idea of normal forms is the use
near identity transformations that leads to a
simpler differential equation which, close to
equilibrium point, exhibits similar behavior
as the original system. By taking advantage
of the circular O(2) symmetry of the system,
Palacios et. al. [3] used symmetry-based ar-
guments to derive the normal form equations
for studying the temporal behavior of spatio-
temporal dynamic cellular pattern known as
hopping state.

The results of the POD analysis are
shown in Figure 5, which depicts the time-
average (considered mode Φ0) followed by
the ten modes, Φ1-Φ10, with the highest
POD energy. The actual amount of en-
ergy in each mode is indicated below each
graph. Each mode shows some amount of
symmetry (see [3]). Hence, up to these sub-
tle differences, it is reasonable to identify the
Fourier-Bessel modes Ψ21, Ψ31, and Ψ41, as
the principal modes of hopping states which
ultimately let to the derivation of the set of
equations found in[3], we added 6 new terms
to the set of equations derived in [3] to ac-
count for multiplicative and additive noise:

ż2 = z̄2z4 + α2z
2
3 z̄4 + z2(ξ1 + µ2 + e22|z2|2

+ e23|z3|2 + e24|z4|2) + η1

ż3 = α3z2z̄3z4 + z3(ξ2 + µ3 + e32|z2|2
+ e33|z3|2 + e34|z4|2) + η2

ż4 = ±z2
2 + α4z

2
3 z̄2 + z4(ξ3 + µ4 + e42|z2|2

+ e43|z3|2 + e44|z4|2) + η3,
(1)

where α2, α3, and α4, are real-valued con-
stants. η1, η2, η3, ξ1, ξ2 and ξ3 represent
Gaussian white noise and are assumed to be
distributed with zero mean and uncorrelated

over space and time.

Figure 5: POD decomposition of a numerical
three-cell hopping state, see Fig. 4, found in

computer simulations of the KS model.

7 Results of the integration of
the normal form equations

We were able to include a multiplicative
noise term and an additive noise term in
the normal form equations found in [3] and
integrate those equations using the Euler-
Maruyama method. We reproduced the re-
sults reported in [3] and compared them with
the results obtained in the presence of multi-
plicative and additive noise. We show phase-
space portraits as well as the probability
density function (PDF) of the simulations
involving noise functions. The parameters
used are: µ = (0.235, 0.2, 0.35), α = (0, 2, 0),
e2 = (−4, 0,−1), e3 = (−1.6,−1,−1.6),
e4 = (−2, 0,−2). In this case the phase-
space portraits and the PDF in the absence
of noise (see figure 6) show that the solution
is a modulated traveling wave. When either
multiplicative(see Figure 7) or additive (see
Figure 8) noise is added the modulations dis-
appear and the trajectory seems to be, as
expected, random.
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Figure 6: Phase-space portraits and Probability
density function (PDF) without noise.

 

Figure 7: Phase-space portraits and
Probability density function (PDF) with

multiplicative noise. Noise intensity = 10−3

 

Figure 8: Phase-space portraits and
Probability density function (PDF) with

additive noise. Noise intensity = 5 x 10−5


