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Abstract: A data mining study has been done 

using HIV-1 protease crystal structures 

complexed with FDA approved HIV-1 protease 

inhibitor drugs. Chemical descriptors have been 

computed for the binding pockets of each crystal 

structure, yielding approximately 600 

constitutional, topological, geometric, 

elecrotostatic, and quantum mechanical 

descriptors for each structure. Several supervised 

(hybrid binary particle swarm optimization- 

artificial neural network and random forest) and 
unsupervised learning (locally linear embedding) 

techniques have been explored for feature 

selection to determine a quantitative structure-

activity relationship (QSAR) model containing 

the most relevant descriptors needed to cluster 

each crystal structure according to their bound 

ligand. This method of computational modeling 

and screening process would aid in the 

understanding of the effect HIV mutations have 

on the binding affinity of various present and 

future HIV-1 protease inhibitors due to structural 
changes arising from the mutations. 

 

Keywords: chemical descriptor selection, data 

mining, QSAR. 

 

1. Introduction 
 

An estimated 33.2 million people are living 

with the Human Immunodeficiency Virus (HIV). 

HIV is a retrovirus that can lead to Acquired 
Immune Deficiency Syndrome (AIDS) [1]. The 

genetic variation occurring due to its replicatory 

dynamics within the human host leads to a high 

rate of mutation which results in drug 

resistances, frustrating the anti-HIV drug 

development process. To aid in the 

understanding of mutations within HIV and their 

effects on the binding structure of the virus when 

complexed to an anti-HIV drug, hundreds of 

crystal structures of various HIV proteins have 

been developed. 
The Protein Data Bank (PDB) houses 

experimentally derived crystal structures of 

biological macromolecules [2]. We focused our 

study on the crystal structures of HIV-1 protease 

complexed with one of the nine FDA approved 

protease inhibitors (Darunavir, Nelfinavir, 

Amprenavir, Lopinavir, Atazanavir, Indinavir, 

Ritonavir, Saquinavir, and Tipranavir). To 

develop a quantitative understanding of the 

mutational effects on the binding nature of HIV, 

chemical descriptors of the binding pockets on 

each of the crystal structures have been 

computed. 

As there are many properties available from 

the descriptor calculation of the binding pockets, 
it is important to screen them for the best set of 

properties in determining its action against the 

drug. Several feature selection techniques have 

been identified: a hybrid binary particle swarm 

optimization-artificial neural network scheme, 

locally linear embedding, and random forest. It is 

hypothesized that the optimal set of descriptors 

will lead to a proper clustering of the crystal 

structures grouped according to their complexed 

ligand. These optimal sets of descriptors can then 

be used to build a QSAR model that best 
describes the shape of the binding pocket based 

on mutations and inhibitor binding. 

 

 

2. Methods 
 

A flowchart of the methodology is presented 

in Figure 1. A dataset is generated using crystal 

structures deposited in the PDB. Chemical 

descriptors are generated from these crystal 
structures. A subset of descriptors are selected 

using various feature selection techniques which 

are then used in clustering to validate whether 

the selected descriptors best correlates the shape 

of the protein structure with its complexed 

ligand. 

 

2.1 Dataset Creation 

 

The PDB was searched for all HIV-1 

protease crystal structures complexed with FDA 
approved protease inhibitors. A total of 57 

protein crystal structures were found to be HIV-1 

complexed with one of the nine FDA approved 



HIV-1 protease inhibitors. A list of the protease 

inhibitors are presented in Table 1. 

 The binding pocket of each crystal structure 

was identified as any amino acid within 6Å of 

the bound ligand. The binding pocket was 

extracted using the DeepView Swiss-PdbViewer 
[3]. If multiple ligands were found to be 

complexed in the structure, then multiple binding 

pockets will be extracted from the structure. Of 

the 57 crystal structures, a total of 62 binding 

pocket structures have been extracted. To 

compute the chemical descriptors of the binding 

pocket, calculations of the molecular electronic 

structure must be computed. The Austin Model 1 

(AM1) energy calculation of each pocket 

structure was computed using Semichem’s 

AMPAC software [4]. The chemical descriptors 

were then computed using Semichem’s Codessa 
software [4]. Approximately 600 constitutional, 

topological, geometric, electrostatic, and 

quantum mechanical descriptors were generated 

from the AM1 energy calculations. To reduce the 

number of descriptors, we eliminated any 

descriptors with samples that contained no 

values and any descriptors that contained a single 

constant value in all samples. This resulted in a 

total of 456 descriptors in the dataset. All 

descriptor values were rescaled to have a zero 

mean and a standard deviation of one. 
 

 
 

Figure 1. Flowchart of methodology sequence. 

Table 1: Number of HIV-1 protease crystal structures 
in the PDB complexed with one of the FDA approved 
protease inhibitors. 
 

PDB Ligand ID Ligand Name Structures 

017 Darunavir 11 
1UN Nelfinavir 6 

478 Amprenavir 2 
AB1 Lopinavir 4 

DR7 Atazanavir 4 

MK1 Indinavir 13 

RIT Ritonavir 5 

ROC Saquinavir 7 

TPV Tipranavir 5 

 

 

 The supervised learning techniques must be 

trained using classification or regression values. 
For classification, the target values are the 

ligands with which each crystal structure was 

complexed to. For regression, we used the 

binding affinity (Ki) of the crystal structures as 

the target values. Twenty five crystal structures 

were found to have their binding affinity values 

reported in the Binding MOAD database [5]. 

 

 

2.2 Descriptor Screening Techniques 

 

Binary particle swarm optimization-
artificial neural network. The binary particle 

swarm optimization-artificial neural network 

(BPSO-ANN) algorithm is a hybrid technique 

involving the use of particle swarms to search 

the descriptor space to select for the optimal set 

of descriptors and utilizes an artificial neural 

network (ANN) as the objective function. We 

implemented the BPSO-ANN algorithm 

described by Agrafiotis and Cedeño to discretize 

the particle swarm process to do a binary 

selection of descriptors, a technique which 
computes the probabilities of selecting a 

descriptor [6]. The roulette wheel selection was 

used to select a subset of 10 descriptors to be 

trained by the ANN. For each descriptor subset, 

two different ANN were trained, using the 

protease inhibitors as the classification targets 

and the inhibitor values for the regression 

targets. To avoid being trapped in a local 

minimum, each ANN was trained three times 

with the lowest training error model retained.  
 
  



 
 
Figure 2. Variable importance plot of the random forest classifier. 

 

The descriptors determined by the neural 

network model with the lowest training error is 

then considered for clustering. 

 

Random Forest. Random forest is a 

supervised tree ensemble machine learning 

classifier developed by Leo Brieman and Adele 

Cutler [7]. In addition to being a classifier, 

random forest includes a measure of descriptor 
importance in determining classification or 

regression called the variable importance 

measure. A random forest model was trained on 

the dataset to classify each of the binding 

pockets to their complexed protease inhibitors. A 

variable importance measurement was computed 

during the classifier training. The top ranked 

group of descriptors are then considered for 

clustering. 

Locally Linear Embedding. Locally linear 

embedding (LLE) is an unsupervised learning 

technique used to create a non-linear 

dimensionality reduction representation of a 
large dataset [8]. LLE maps the high dimension 

data points Xi to low dimensional vectors Yi. In 

the standard LLE algorithm, the Euclidean 

distance between each data point Xi is computed.  



 
 
Figure 3. Hierarchical clustering of the 62 binding pockets with the top 15 descriptors determined by random forest. 

 

A linear fitting is performed to compute the 

weight matrix W that best reconstructs each data 

point Xi by minimizing the cost function: 

𝜀 𝑊 =   𝑋𝑖 −  𝑊𝑖𝑗 𝑋𝑗
𝑗
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𝑖

 

 

The low dimension mapping vectors Yi are 

constructed to d dimensions by using the weight 
matrix W to minimizing the embedding cost 

function Φ 𝑌  using the bottom d non-zero 

eigenvectors: 

Φ 𝑌 =   𝑌𝑖 −  𝑊𝑖𝑗 𝑌𝑗
𝑗

 

2

𝑖

 

 

LLE was used to map the 456 dimension 

descriptor dataset to 10 dimensions. 

The most suitable set of descriptors selected 

by the different screening approaches are used by 

hierarchical clustering to verify that the selected 

descriptors best correlate the descriptive features 

of the binding pockets of the HIV-1 protease 
crystal structures with their bound ligand. 

 

2.3 Clustering 

 

To validate the list of important descriptors, 

hierarchical clustering of the dataset with the 

feature selected subsets of descriptors is 

performed. It is expected that a good set of 

descriptors would lead to each of the binding 

pockets clustered together according to their 

complexed ligands. 

 Two distance metrics were explored, 

Euclidean and Pearson distances. These two 
distances are used by the Ward agglomerative 

method to build the hierarchical tree. Nine 

clusters are considered and examined to 

determine whether the binding pockets are 

grouped according to ligand.  

 

 

3. Results and Discussion 
 

We have evaluated three data mining 

techniques that best assess an optimal set of 

QSAR descriptors to quantitatively correlate the 

binding pocket of HIV-1 protease with their 

bound ligand. Both the BPSO-ANN and LLE 

techniques produced hierarchical trees which 

appeared to be clustered randomly. The LLE 

technique is not suitable for this study as we 

were unable to determine which chemical 

descriptors were selected for the low 

dimensionality mapping. Based on the work of 

L’Heureux et al., LLE is best used as a 
preprocessing technique for dimensionality 

reduction prior to building a model which 

utilizes large data [9]. Poor clustering results in 



the BPSO-ANN and LLE method can be 

attributed to the small dataset size. ANN do not 

train well with small training sample sizes and 

LLE does not appear to capture the non-linearity 

of the chemical data due to the small sample 

sizes of each complexed ligand in our dataset. 
Initial results with random forest appear 

satisfactory. The top 15 descriptors shown in the 

variable importance plot in Figure 2 were 

considered. Using the Pearson distance 

measurement with the Ward agglomerative 

hierarchical tree producing algorithm as shown 

in Figure 3, we were able to obtain some 

meaningful clusters. The initial tree was built 

using the parameters nTree = 1000 and mtry = 21. 

We plan to continue our study with random 

forest by optimizing the parameters nTree and mtry 

to minimize the classifier training error which 
should produce the most optimal set of 

descriptors for clustering. These descriptors will 

then be used to build a QSAR model which will 

quantitatively describe the shape of the binding 

pocket with its affinity for ligand binding.  
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