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1.- Abstract 

In this work we extend the CCBA to produce a parallel-iteratively mesh generator. The CCBA or 
Convex-Combination-Based-Algorithm (presented in ACSESS 2007) uses a mesh-size function 
and convex combinations on local polytopes to change the position of the nodes of an initial 
mesh. This process is repeated iteratively and stops when the max norm between two 
consecutives meshes is smaller than a given threshold. The parallelization is obtained by dividing 
the initial mesh into as many submeshes as processors available and dealing with each submesh 
in a different processor. This so-called mesh decomposition technique does not depend on the 
physical domain of the problem, which is the main difference and the main advantage over 
domain decomposition-like techniques for parallelization. We also present a way to reduce 
overhead while preserving the property of non-folding of the original sequential algorithm. 
Examples of 2D meshes show the potential of the technique for constructing non-uniform quad 
meshes. 
 

2.- CCBA 
We start with an initial grid constructed over the domain, Ω . Then, for each point, p , of the 
mesh we consider a convex polytope Ω⊂V  that contains p. If V is generated from points jv  
then, p is updated according to 
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where jλ  are estimated with the mesh-size function f, 0>f . 
Since (1) defines a local convex combination mapping that maps V into a convex closed region, 
then (1) is one-to-one, and Vp∈ˆ . Moreover, Vp ∂∉ˆ  because 0>f  and, in turn, 0>jλ . This 
property guarantees that non-folding will be produced. 
 

2.1.- The mesh-size function 
The mesh-size function, f, is a positive function defined on Ω . Hence, f is independent of the 
numbers of points of the grid, which provides simplicity and versatility to the model. For regions 
of high density, the mesh-size function f has small values, whereas for regions of small density, f 
has bigger values. The mesh-size function can be obtained through different ways: given a 
priori, based on the geometry of Ω , based on errors from differential equations or combination 
of these, for mention just a few. 
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3.- Parallelization 
Because calculations in the convex-combination based algorithm are done locally, the CCBA can 
be easily parallelized. We work with a SIMD (Singular Instruction Multiple Data) problem and 
we consider the following information as input values: 

• tP : total number of processors to be used, 
• n: rows of the grid, 
• m: columns of the grid. 

tP  will be written as follow: 1+= PPt , where P is the number of processors that will work 
modifying the mesh points, and the number 1 stands for the master processor. 
First we do mesh decomposition, which consists of dividing the initial mesh in as many 
submeshes as processors available are. Then, we distribute the P pieces of the initial mesh 
among P processors where they will be modified. During mesh decomposition we also replicate 
certain rows. The last two rows of processor j will be the first two rows of processor 1+j , with 

1,,1 −= Pj … . Each processor works independently and only interacts 
with other processors at the end of each iteration, to exchange the 
replicated rows. Processor j will update its last row (red line) with the 
second row of processor 1+j ; and processor 1+j  will update its first row 
(blue line) with the row prior to the last row of processor j. By proceeding 
this way, each processor interacts with its two closest neighbors 
(processors) and no foldings are guaranteed. In addition, the duplication of 
rows reduces idle time and avoids doing extra computations. It is worth to 
say that communication, idle time, and extra computation are the three 
main sources of overhead in parallel computation. 
 
 3.1.- Mesh decomposition 
The idea is to divide the initial mesh into sub-meshes and assign each of these pieces to a 
processor. The size of each sub-mesh will be proportional to the computational power of the 
corresponding assigned processor. Thus, we are able to adapt the algorithm to heterogeneous 
clusters of computers. Mesh decomposition has several advantages over domain decomposition. 
Domain decomposition, as its name suggests, means dividing the given domain, Ω , into several 
pieces. This can be a very difficult task depending on the complexity of Ω . Mesh 
decomposition, on the other hand, is geometry-independent. Since the initial mesh (and every 
structured quad mesh, actually) is stored in a matrix, dividing this mesh simply means selecting a 
number of rows and/or columns from the matrix. This is done automatically. For instance, 
example 2 presents a very complex non-convex domain. However, for this case mesh 
decomposition is as easy as it is for example 1, which has a very simple square-shape domain. 
After doing domain decomposition each piece of the decomposed domain remains unchanged 
during the mesh generation process; local meshes are adapted to the sub-domains. In contrast, in 
the mesh decomposition case, each sub-mesh adapts itself to the domain. They can change 
independently, facilitating the refinement procedure. We can appreciate this in example 1. Each 
sub-mesh is a uniform rectangular-shape mesh but, at the end of the mesh generation process, 



each one presents a very different shape resulting from the mesh-size function used for mesh 
refinement. 
 

4.- Numerical examples 
 4.1.- Example 1 
For this example, we consider a square-shape domain with boundaries 3−=x , 3=x , 3−=y , 
and 3=y . The initial mesh is the simplest one, a uniform Cartesian grid with 60== mn . We 
have taken 6=tP , which means that we have the master processor that takes care of indicating 
when the mesh is ready based on the errors sent from other processors, and five processors 
working on building the mesh. The next step is mesh decomposition. Assuming that every 
processor has the same computational power, the initial mesh is divided into 5 submeshes with 
the same amount of points each (see figure 1). Now, each processor will modify their submeshes 
interacting with the (up to) two closest neighbors after each iterations for updating the sub-
boundaries’ elements.   Figure 1  shows the final submeshes obtained from each processor. 
 

 
Fig. 1 Mesh decomposition and final submeshes obtained after several iterations. 

 
We note how each submesh evolves independently and changes its shape in order to attain the 
desired refinement, given by the mesh-size function f. This is one of the differences between 
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mesh decomposition and domain decomposition, since for the latter the individual subdomains 
does not change their shapes. For this example, f is obtained from 
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The final mesh is obtained by putting together the different pieces, being careful with the 
repeated sub-boundaries. 
 
 

 
Fig. 2 Initial Cartesian grid, left, and final smooth mesh, right. 

 
4.2.- Example 2 

In this case, we have an S-shape domain. The initial mesh, again, is obtained the simplest way, 
just straight lines across the domain. After this, we proceed with mesh decomposition. As 
mentioned before, mesh decomposition is as easy to do as it 
was for the former convex example, since this is a domain-
independent technique. Figure 3 shows the results. For this 
example we have used 7 processor with equal computational 
power. The mesh-size function, f, has been obtained by 
applying the R-function technique explained in [3]. f takes into 
account the curvature of the domain, producing small elements 
in regions close to sections of the boundary with high 
curvature. 
 

5.- Conclusions and future works 
The technique produces meshes of high quality that are smooth and can be adapted to different 
domains and different levels of refinement. The implementation of a mesh-size function offers 
flexibility to control the refinement of the mesh. The parallelization of the original CCBA can be 
done very easily by using a geometry-independent mesh decomposition technique, instead of 



using domain decomposition. The duplication of the boundaries of the sub-meshes, on the other 
hand, guarantees that unfolded meshes will be produced. 
We expect to develop a deeper analysis of the speed up and scalability of this parallel mesh 
generator. Also, we will study the possibility of extending the algorithm for constructing 3D 
meshes. 
 

 
Fig. 3 Numerical results for the S-shape domain. 
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