

Parallel implementation of the CCBA
for mesh generation

E.D. Batista, J.S. Otto and J.E. Castillo

Parallel implementation of the CCBA for mesh generation
E.D. Batista*, J.S. Otto and J.E. Castillo

Computational Science Research Center, SDSU
dbatista@sciences.sdsu.edu

1.- Abstract

In this work we extend the CCBA to produce a parallel-iteratively mesh generator. The CCBA or
Convex-Combination-Based-Algorithm (presented in ACSESS 2007) uses a mesh-size function
and convex combinations on local polytopes to change the position of the nodes of an initial
mesh. This process is repeated iteratively and stops when the max norm between two
consecutives meshes is smaller than a given threshold. The parallelization is obtained by dividing
the initial mesh into as many submeshes as processors available and dealing with each submesh
in a different processor. This so-called mesh decomposition technique does not depend on the
physical domain of the problem, which is the main difference and the main advantage over
domain decomposition-like techniques for parallelization. We also present a way to reduce
overhead while preserving the property of non-folding of the original sequential algorithm.
Examples of 2D meshes show the potential of the technique for constructing non-uniform quad
meshes.

2.- CCBA
We start with an initial grid constructed over the domain, Ω . Then, for each point, p , of the
mesh we consider a convex polytope Ω⊂V that contains p. If V is generated from points jv
then, p is updated according to

 ()∑
=

=
n

j
jj vpp

1

ˆ λ (1)

where jλ are estimated with the mesh-size function f, 0>f .
Since (1) defines a local convex combination mapping that maps V into a convex closed region,
then (1) is one-to-one, and Vp∈ˆ . Moreover, Vp ∂∉ˆ because 0>f and, in turn, 0>jλ . This
property guarantees that non-folding will be produced.

2.1.- The mesh-size function
The mesh-size function, f, is a positive function defined on Ω . Hence, f is independent of the
numbers of points of the grid, which provides simplicity and versatility to the model. For regions
of high density, the mesh-size function f has small values, whereas for regions of small density, f
has bigger values. The mesh-size function can be obtained through different ways: given a
priori, based on the geometry of Ω , based on errors from differential equations or combination
of these, for mention just a few.

Processor j +1

Processor j

3.- Parallelization
Because calculations in the convex-combination based algorithm are done locally, the CCBA can
be easily parallelized. We work with a SIMD (Singular Instruction Multiple Data) problem and
we consider the following information as input values:

• tP : total number of processors to be used,
• n: rows of the grid,
• m: columns of the grid.

tP will be written as follow: 1+= PPt , where P is the number of processors that will work
modifying the mesh points, and the number 1 stands for the master processor.
First we do mesh decomposition, which consists of dividing the initial mesh in as many
submeshes as processors available are. Then, we distribute the P pieces of the initial mesh
among P processors where they will be modified. During mesh decomposition we also replicate
certain rows. The last two rows of processor j will be the first two rows of processor 1+j , with

1,,1 −= Pj … . Each processor works independently and only interacts
with other processors at the end of each iteration, to exchange the
replicated rows. Processor j will update its last row (red line) with the
second row of processor 1+j ; and processor 1+j will update its first row
(blue line) with the row prior to the last row of processor j. By proceeding
this way, each processor interacts with its two closest neighbors
(processors) and no foldings are guaranteed. In addition, the duplication of
rows reduces idle time and avoids doing extra computations. It is worth to
say that communication, idle time, and extra computation are the three
main sources of overhead in parallel computation.

 3.1.- Mesh decomposition
The idea is to divide the initial mesh into sub-meshes and assign each of these pieces to a
processor. The size of each sub-mesh will be proportional to the computational power of the
corresponding assigned processor. Thus, we are able to adapt the algorithm to heterogeneous
clusters of computers. Mesh decomposition has several advantages over domain decomposition.
Domain decomposition, as its name suggests, means dividing the given domain, Ω , into several
pieces. This can be a very difficult task depending on the complexity of Ω . Mesh
decomposition, on the other hand, is geometry-independent. Since the initial mesh (and every
structured quad mesh, actually) is stored in a matrix, dividing this mesh simply means selecting a
number of rows and/or columns from the matrix. This is done automatically. For instance,
example 2 presents a very complex non-convex domain. However, for this case mesh
decomposition is as easy as it is for example 1, which has a very simple square-shape domain.
After doing domain decomposition each piece of the decomposed domain remains unchanged
during the mesh generation process; local meshes are adapted to the sub-domains. In contrast, in
the mesh decomposition case, each sub-mesh adapts itself to the domain. They can change
independently, facilitating the refinement procedure. We can appreciate this in example 1. Each
sub-mesh is a uniform rectangular-shape mesh but, at the end of the mesh generation process,

each one presents a very different shape resulting from the mesh-size function used for mesh
refinement.

4.- Numerical examples
 4.1.- Example 1
For this example, we consider a square-shape domain with boundaries 3−=x , 3=x , 3−=y ,
and 3=y . The initial mesh is the simplest one, a uniform Cartesian grid with 60== mn . We
have taken 6=tP , which means that we have the master processor that takes care of indicating
when the mesh is ready based on the errors sent from other processors, and five processors
working on building the mesh. The next step is mesh decomposition. Assuming that every
processor has the same computational power, the initial mesh is divided into 5 submeshes with
the same amount of points each (see figure 1). Now, each processor will modify their submeshes
interacting with the (up to) two closest neighbors after each iterations for updating the sub-
boundaries’ elements. Figure 1 shows the final submeshes obtained from each processor.

Fig. 1 Mesh decomposition and final submeshes obtained after several iterations.

We note how each submesh evolves independently and changes its shape in order to attain the
desired refinement, given by the mesh-size function f. This is one of the differences between

Mesh
decomposition

Initial mesh

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Final submeshes

Mesh-size function f

Mesh-size function

mesh decomposition and domain decomposition, since for the latter the individual subdomains
does not change their shapes. For this example, f is obtained from

{ }),(),,(),,(min),(321 yxgyxgyxgyxf =
where

2.33.),(1 ++×= yyxg

2.)2()3(2.),(22
2 +−+−×= yxyxg

07.)1()3(15.),(22
3 +−++×= yxyxg

The final mesh is obtained by putting together the different pieces, being careful with the
repeated sub-boundaries.

Fig. 2 Initial Cartesian grid, left, and final smooth mesh, right.

4.2.- Example 2

In this case, we have an S-shape domain. The initial mesh, again, is obtained the simplest way,
just straight lines across the domain. After this, we proceed with mesh decomposition. As
mentioned before, mesh decomposition is as easy to do as it
was for the former convex example, since this is a domain-
independent technique. Figure 3 shows the results. For this
example we have used 7 processor with equal computational
power. The mesh-size function, f, has been obtained by
applying the R-function technique explained in [3]. f takes into
account the curvature of the domain, producing small elements
in regions close to sections of the boundary with high
curvature.

5.- Conclusions and future works
The technique produces meshes of high quality that are smooth and can be adapted to different
domains and different levels of refinement. The implementation of a mesh-size function offers
flexibility to control the refinement of the mesh. The parallelization of the original CCBA can be
done very easily by using a geometry-independent mesh decomposition technique, instead of

using domain decomposition. The duplication of the boundaries of the sub-meshes, on the other
hand, guarantees that unfolded meshes will be produced.
We expect to develop a deeper analysis of the speed up and scalability of this parallel mesh
generator. Also, we will study the possibility of extending the algorithm for constructing 3D
meshes.

Fig. 3 Numerical results for the S-shape domain.

6.- References
1. E.D. Batista, A convex-combination based algorithm for grid generation, poster

presentation at the Applied Computational Science and Engineering Student Support
(ACSESS), San Diego State University, USA, March 7, 2007.

2. P.S. Pacheco, Parallel programming with MPI, Morgan Kaufmann Publishers, Inc. San
Francisco, California, 1997.

3. V.L. Rvachev, T.I. Sheiko, V. Shapiro, I. Tsukanov, Transfinite interpolation over
implicitly defined sets, Computer Aided Geometric Design, 18, 4, 195-220, 2001.

4. Castillo J.; Mathematical aspects of numerical grid generation; SIAM; (1991).

7.- Acknowledgements
Thanks very much Carny Cheng and Jennifer Winn for translating the original CCBA MATLAB
code to C.

Initial mesh

Final smooth mesh

Mesh decomposition

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5 Processor 6

