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Abstract

In this paper we propose a new image smoothing and edge detection
technique that employs a combination of nonlinear diffusion and bi-
lateral filtering. The model is based upon two very well established
methodologies in the image processing community, which makes
the method easy to understand and implement. Our numerical ex-
periments show that the proposed model is capable of achieving
more accurate reconstructions from noisy images, as compared to
two other popular nonlinear diffusion models in the literature. We
also propose a new and simple diffusion stopping criterion, based
on the second derivative of the correlation between the noisy image
and the filtered image. This indirect measure allows stopping the
diffusion process very close to the point of maximum correlation
between the noise-free image and the reconstructed image, in the
absence of the former. The stopping criterion is sufficiently general
to be applied with most nonlinear diffusion methods normally used
for image noise removal.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Filtering

Keywords: nonlinear diffusion, bilateral filter, scale-space, image
denoising

1 Introduction

Analysis of image features in early vision presents two almost mu-
tually exclusive requirements. On the one hand, it is desirable to
smooth homogeneous regions of the image, and on the other hand,
we wish to preserve the location of the boundaries or edges accu-
rately. In order to achieve both goals, the classical multiscale anal-
ysis theory due to Marr and Hildreth [1980], later formalized by
Witkin [1983], Koenderink [1984] and Canny [1986], uses a low-
pass filtering obtained by convolving the image with Gaussians of
increasing variance. Koenderink [1984] soon realized that the con-
volution of the image with a Gaussian at each scale is equivalent
to the solution of the heat equation with the image as initial state.
Thus, given an image u0 (~x), where ~x = (x1, x2) denotes space
coordinates, the scale-space analysis associated with u0 consists in
solving the system1

∂tu−∇2u = 0, u (~x, 0) = u0 (~x) . (1)

∗e-mail: carlos.bazan@sdsu.edu
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1Unless stated otherwise, ∇· and ∇2· involve derivatives with respect
to the spatial variable ~x.

This system has a unique solution [Weickert 1996]

u (~x, t) =

{
u0 (~x) t = 0(
G√2t ∗ u0

)
(~x) t > 0 ,

(2)

provided that (i) the function satisfies |u (~x, t)| ≤ M exp
(
a |~x|2),

M > 0, (ii) it depends continuously on the initial condition u0 with
respect to ‖ · ‖L∞(R2), and (iii) it meets the maximum-minimum

principle inf
R2

u0 6 u (~x, t) 6 sup
R2

u0 on R2 × [0,∞). The point ~x

is an edge for the scale t where |∇u (~x, t)| is large and ∇2u (~x, t)
changes sign.

The simplicity and effectiveness of the Gaussian smoothing makes
it an attractive tool for image noise removal. However, it also
presents at least a couple of serious drawbacks: (i) Gaussian
smoothing does not only smooth the noise but it also smoothes
everything else along with it; and (ii) Gaussian smoothing tends
to dislocate edges when one moves from a finer to a coarser
scale [Witkin 1983; Witkin 1984]. Most of the shortcomings of
linear diffusion processes can be avoided through nonlinear diffu-
sion models.

This paper is organized as follows: In section 2, we describe briefly
the nonlinear diffusion models applied in image processing for the
reduction of noise and the detection of edges. This serves as back-
ground for our proposed model. In section 3, we define our new
model for image smoothing and edge detection and conjecture the
reasons for its practical success. In section 4, we present some
computational examples of the performance of the new model as
compared to two other popular models in the literature. In section
5, we propose a simple, yet efficient diffusion stopping criterion
for achieving good results when nonlinear diffusion processes are
applied. We conclude the paper in section 6 with a discussion and
outline of possible future improvements and analysis of the model.

2 Nonlinear Diffusion Models

One of the first attempts to derive a model that incorporates (cur-
rent) local information from an image within a PDE framework was
conducted by Perona and Malik [1990]. They proposed a nonlinear
diffusion model (which they called ’anisotropic’) in order to avoid
the blurring of edges and other localization problems presented by
linear diffusion models. The model accomplishes this by applying
a process that reduces the diffusivity in places having higher likeli-
hood of being edges. This likelihood is measured by a function of
the (current) local gradient ‖∇u‖. The model can be written as

∂tu−∇ · (g (‖∇u‖)2∇u
)

= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) ,
(3)

where ∂~nu = 0 denotes homogeneous Neumann boundary
conditions. In this model the diffusivity has to be such that
g

(‖∇u‖2) → 0 when ‖∇u‖ → ∞ and g
(‖∇u‖2) → 1 when

‖∇u‖ → 0. One of the diffusivities Perona and Malik proposed is

g
(‖∇u‖2) =

1

1 + ‖∇u‖2/λ2
, λ > 0, (4)



where λ is a threshold (contrast) parameter that separates forward
and backward diffusion [Weickert 1996]. The model accomplishes
the long sought effect of blurring small fluctuations (possible noise)
while enhancing edges. The results obtained by Perona and Malik
are visually very impressive.

Notwithstanding the practical success of the Perona-Malik model,
it presents some serious theoretical problems: (i) None of the clas-
sical well-posedness frameworks is applicable to the Perona-Malik
model, i.e. we can not ensure well-posedness results [Weickert and
Schnörr 2000; Nitzberg and Shiota 1992]; (ii) Uniqueness and sta-
bility with respect to the initial image should not be expected, i.e.
solvability is a difficult problem, in general [Kichenassamy 1997;
Höllig and Nohel 1983; Höllig 1983; Perona et al. 1994; Catté et al.
1992]; (iii) The regularizing effect of the discretization plays too
much of an important role in the solution [Fröhlich and Weickert
1994; Benhamouda 1994]. The latter is perhaps the key element
in the success or failure of the model. Most practical applications
work very well provided that the numerical schemes stabilize the
process through some implicit regularization.

This observation motivated much research towards the introduction
of the regularization directly into the PDE to avoid the dependence
on the numerical schemes [Catté et al. 1992; Nitzberg and Shiota
1992]. A variety of spatial, spatio-temporal, and temporal regu-
larization procedures have been proposed over the years [Baren-
blatt et al. 1993; Catté et al. 1992; Weickert 2001; Weickert 1996;
Whitaker and Pizer 1993; Li and Chen 1994]. The one that has at-
tracted much attention is the mathematically sound formulation due
to Catté, Lions, Morel and Coll [1992]. They proposed replacing
the diffusivity g

(‖∇u‖2) of the Perona-Malik model by a slight
variation g

(‖∇uσ‖2
)

with uσ = Gσ ∗ u, where Gσ is a smooth
kernel (Gaussian of variance σ2). Their proposed model is there-
fore

∂tu−∇ · (g (‖∇uσ‖)2∇u
)

= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) .
(5)

We should note that this spatial regularization model belongs to
a class of well-posed problems (existence and uniqueness were
proven in [Catté et al. 1992]), and that its successful implemen-
tation is contingent on the choosing of an appropriate value for the
additional regularization parameter σ. Whitaker and Pizer [1993]
and Li and Chen [1994] suggested making the parameters σ and λ
time-dependent, and Benhamouda [1994] performed a systematic
study of the influence of these parameters for the one-dimensional
case.

Another interesting variation to the Perona-Malik model is the one
proposed by Alvarez, Lions and Morel [1992]. They refined (5)
further and proposed and studied a class of nonlinear parabolic dif-
ferential equations of the form

∂tu− g (|G ∗ ∇u|) |∇u|∇ ·
( ∇u

|∇u|
)

= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) .

(6)

The degenerate diffusion term |∇u|∇ · (∇u/|∇u|) diffuses u in
the direction orthogonal to its gradient ∇u and prevents diffusion
in the direction of ∇u. The term g (|G ∗ ∇u|) is used for edge
enhancement and it controls the speed of the diffusion.

3 Nonlinear Diffusion and Bilateral Filtering

In the Catté-Lions-Morel-Coll model the term inside the diver-
gence, g

(‖∇uσ‖2
)
, is a function of the gradient of the solution

at scale σ of the heat equation with u (~x, 0) as initial state. Con-
sequently, it is equivalent to using an estimate of the gradient of u

at point ~x, obtained by the classical theory [Alvarez et al. 1992].
In practice, after the Gaussian (domain) filtering is performed, the
term g

(‖∇uσ‖2
)

allows detection of the locations of the main
edges and prevents excessive diffusion at these locations. By the
same token, the small fluctuations (noise) will be smooth enough
(avoiding them being mistaken for edges) and can be diffused away.

In this paper we propose using a refined estimate of the gradient
of u at point ~x, obtained by applying a bilateral filter in place of
the Gaussian kernel. Bilateral filtering is a technique for smooth-
ing images while preserving edges. The first application of this
method is attributed to Aurich and Weule [1995], and it was sub-
sequently rediscovered by Smith and Brady [1997] and Tomasi and
Manduchi [1998]. Since its introduction, the bilateral filter has been
successfully employed in various contexts [Bennet and McMillan
2005; Aleksic et al. 2006; Liu et al. 2006; Oh et al. 2001; Durand
and Dorsey 2002; Petschnigg et al. 2004; Eisemann and Durand
2004; Elad 2005; Bae et al. 2006; Ramanath and Snyder 2003; Win-
nermöller et al. 2006]. Its characteristics and behavior have been the
subjects of extensive theoretical studies [Sochen et al. 2001; van de
Weijer and van den Boomgaard 2001; van de Weijer and van den
Boomgaard 2002; Elad 2002; Barash 2002; Barash and Comaniciu
2004; Durand and Dorsey 2002; Buades et al. 2006a; Mrázek et al.
2006; Paris and Durand 2006] which have made bilateral filtering a
fairly well understood process.

The basic idea underlying bilateral filtering is to combine domain
and range filtering, thereby enforcing both geometric and photo-
metric locality. The model can be expressed as

BF (u (~x)) =

=
1

W (~x)

∫

Ω

Gσs (ξ, ~x) Gσr (u (ξ) , u (~x)) ∗ u (ξ) dξ,
(7)

with the normalization constant

W (~x) =

∫

Ω

Gσs (ξ, ~x) Gσr (u (ξ) , u (~x)) dξ. (8)

Typically, Gσs will be a spatial Gaussian that decreases the influ-
ence of distant pixels, while Gσr will be a range Gaussian that de-
creases the influence of pixels ξ with intensity values that are very
different from those of u (~x), e.g.

Gσs = exp

(
−|ξ − ~x|2

2σ2
s

)
,

Gσr = exp

(
−|u (ξ)− u (~x)|2

2σ2
r

)
.

(9)

Parameters σs and σr dictate the amount of filtering applied in the
domain and the range of the image, respectively. This filtering tech-
nique, as presented thus far, has the possible objection that it might
consist of an expensive proposition. Fortunately, several authors
have addressed this limitation and devised very efficient implemen-
tations of the method [Pham and van Vliet 2005; Weiss 2006; Paris
and Durand 2006; Chen et al. 2007]. In our application, we use the
fast approximation due to Paris and Durand [2006] which employs
downsampling in the domain and range that achieves important ac-
celeration of the bilateral filtering.

The proposed model is therefore

∂tu−∇ · (g (‖∇uBF ‖2
)∇u

)
= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) .
(10)

Where uBF = BF (u (~x)) is the domain- and range-filtered image
(7), and g (s) is a smooth nonincreasing function with g (0) = 1,



g (s) > 0, and g (s) tending to zero at infinity. We should recall
here that the main purpose of the function g (s) is to provide ‘in-
telligent’ smoothing. It should not only inhibit diffusion at edges
and allow it far from them, but it should also precisely locate the
position of the main edges. By design, this is exactly what bilat-
eral filtering accomplishes. It provides image smoothing with strict
preservation of the edges without artificially enhancing them.

The practical success of the proposed model has one its roots in the
connection that exists between bilateral filtering and the Perona-
Malik-based methods. Buades, Coll and Morel [2006b] have estab-
lished the link existing between bilateral filtering and well-known
PDE models such as the heat equation and the Perona-Malik equa-
tion. They have proven that for small neighborhoods, bilateral fil-
tering using a box function as spatial weight, asymptotically be-
haves as the Perona-Malik model. In a discrete setting, Durand and
Dorsey [2002] have shown that the bilateral filter, if constrained
to the four neighbors of each pixel, corresponds to a discrete ver-
sion of the Perona-Malik filter. Subsequently, Barash [2002] used
adaptive smoothing as a link between anisotropic diffusion and bi-
lateral filtering, each of which can be viewed as a generalization of
the former; while Elad [2002] and Barash and Comaniciu [2004]
have shown that bilateral filtering is equivalent to a sum of several
Perona-Malik filters at different scales.

4 Numerical Experiments

In order to compare the performance of the proposed model we
implemented the three models below using finite difference, and
a simple performance measure based on the correlation between
the noise-free image and the three filtered images. Model 1 is the
classic Perona-Malik model (3)

∂tu−∇ · (g (‖∇u‖2)∇u
)

= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) ,

g
(‖∇u‖2) =

1

1 + ‖∇u‖2/λ2
, λ = 10−2.

(11)

Parameter λ = 10−2 was estimated as an average of the ‘robust
scale’ proposed in [Black and Sapiro 1999; Black et al. 1998], using
the initial state of the images employed in our tests. Model 2 is the
Perona-Malik variant by Catté, Lions, Morel and Coll (5)

∂tu−∇ · (g (‖∇uσ‖2
)∇u

)
= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) ,

g
(‖∇u‖2) =

1

1 + ‖∇uσ‖2
/
λ2

, λ = 10−2,

uσ = Gσ ∗ u, σ = 1.

(12)

It has been shown [Mrázek 2001a] that σ = 1 is sufficient for a
large interval of noise variances provided that the noise in neigh-
boring pixels is uncorrelated and that the grid size is one. Model 3
is the proposed model (10)

∂tu−∇ · (g (‖∇uBF ‖2
)∇u

)
= 0,

∂~nu = 0, u (~x, 0) = u0 (~x) ,

g
(‖∇u‖2) =

1

1 + ‖∇uBF ‖2
/
λ2

, λ = 10−2,

uBF = BF (u) , σs = 3, σr = 10−2.

(13)

The parameters σs and σr are chosen according to the desired
amount of low-pass filtering and desired amount of combination of
pixel values, respectively [Tomasi and Manduchi 1998]. We loosely

followed the recommendations given in [Liu et al. 2006] for choos-
ing σs, and the ones in [Paris et al. 2007] for choosing σr . They
give us a compact kernel that allows a very fast execution of the
bilateral filtering.

The experiment consisted in running the three models using an ex-
plicit Euler method with a time step2 of δt = 10−2, and trying
to restore the noise-free image, f (~x), that has been perturbed by
additive Gaussian white noise. The three models were run for 50
iterations and the correlation coefficient between the noise-free im-
age and each of the filtered images was measured at each iteration.
For every case, we observe that the best image reconstructed by
the proposed model is closer to the noise-free image than the best
images reconstructed by the other two models tested (see Fig. 1,
2 and 3). We can also observe that the proposed model performs
‘in between’ the other two models in terms of speed of reconstruc-
tion. The Catté-Lions-Morel-Coll model accomplishes the fastest
reconstruction, i.e. it attains its best reconstructed image in fewer
iterations than the other two methods. The classic Perona-Malik
model achieves a better reconstruction if one were to iterate beyond
the optimal stopping times of the three models, i.e. reaching 50 it-
erations in this case. Lastly, in order for any of the three models
to accomplish its best possible reconstruction, one has to be able
to stop the diffusion process at the peak of its performance, in the
absence of the noise-free image. In general, this remains an open
problem. In the next section we propose a procedure that works
very well with all the models considered in this paper.
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Figure 1: Correlation coefficient between the noise-free image of
Lena and the filtered image of Lena at each iteration, along with the
noise-free image of Lena (left) and the noisy image of Lena (right)
corrupted by additive Gaussian white noise, SNR = 17.4 dB. The
maximum value of the correlation coefficient for each model is as
follows: Perona-Malik, 0.9553; Catté-Lions-Morel-Coll, 0.9544;
Proposed Model, 0.9571.

5 Diffusion Stopping Criterion

Determining when the diffusion process should be stopped is cru-
cial for obtaining a good image reconstruction. Several authors
have addressed this issue in the past in an attempt to devise an op-
timal stopping criterion. Sporring and Weickert [1999] focused on
the maximal entropy change by scale to estimate the size of im-
age structures. They argued that the minimal change by scale indi-
cates especially stable scales with respect to evolution time, and

2Weickert, Romeny, and Viergever [1998] have shown that, for explicit
discretization schemes, the stability condition (assuming δ~x = 1 and ∀s :
g (s) 6 1) is δt < 1/(2d), with d being the number of dimensions of the
data, which for a 2D image d = 2.



0 5 10 15 20 25 30 35 40 45 50
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Iterations

C
o

rr
e

la
ti

o
n

 C
o

e
!

ci
e

n
t

Performance Comparison

 

 

Perona−Malik

Catte−Lions−Morel−Coll

Proposed Model

Figure 2: Correlation coefficient between the noise-free image of
the Boats and the filtered image of the Boats at each iteration, along
with the noise-free image of the Boats (left) and the noisy image
of the Boats (right) corrupted by additive Gaussian white noise,
SNR = 18.9 dB. The maximum value of the correlation coefficient
for each model is as follows: Perona-Malik, 0.9418; Catté-Lions-
Morel-Coll, 0.9416; Proposed Model, 0.9449.
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Figure 3: Correlation coefficient between the noise-free image of
the Clown and the filtered image of the Clown at each iteration,
along with the noise-free image of the Clown (left) and the noisy
image of the Clown (right) corrupted by additive Gaussian white
noise, SNR = 21.2 dB. The maximum value of the correlation co-
efficient for each model is as follows: Perona-Malik, 0.9749; Catté-
Lions-Morel-Coll, 0.9757; Proposed Model, 0.9763.

conjectured that these scales could be good candidates for stop-
ping times in nonlinear diffusion processes. Weickert [1999b] also
pointed out that the monotonically decreasing ‘relative variance’,
0 6 var (u)/var (u0) 6 1, could be used to measure the distance
of u from the initial state u0 and, by prescribing an appropriate
value for the relative variance, it can constitute a good criterion for
stopping the nonlinear diffusion.

Dolcetta and Ferretti [2001] formulated a stopping criterion within
the framework of optimal control theory. They considered the min-
imization of the performance index

E (t) =

∫ t

0

(Ec + Eα) dt, (14)

where Ec is the computing cost and Eα is the stopping cost, which
encourages diffusion for small values of the scale factor. The au-
thors argued that a careful balancing of the two terms is neces-
sary for achieving good results, and suggested to take Ec = c

and Eα = − (∫
Ω
|u− u0|2 dx

)α/2
, for some positive constants c

and α. Mrázek [2001b] developed a new interesting time-selection
strategy based on the correlation between the signal and the noise.
He argued that, if the noise-free image and the noise were uncor-
related, it is appropriate to require that their artificial substitutes u
and (u0 − u) share the same property, and select the stopping time
such that t = arg min

t
corr (u0 − u, u). The author also pointed

out that the assumption about the noise-free image and the noise
being uncorrelated holds initially, but it does not necessarily hold
for the filtered image, u, and the filtering noise (u0 − u). More re-
cently, Awate and Whitaker [2006] found empirically that entropy
reduction by gradient descent reduces the randomness introduced
by the noise faster than it reduces the inherent randomness in the
signal. They suggested that an efficient stopping time would be
when the relative rate of change of entropy, within two consecutive
iterations, falls below some threshold to be chosen.

We propose a new (very simple) diffusion-stopping criterion in-
spired by observation of the behavior of the correlation between the
noise-free image and the filtered image, corr (f, u), and the corre-
lation between the noisy image and the filtered image, corr (u0, u).
Although the former measure is only available in experimental set-
tings it helps validate the usefulness of the latter. The nonlinear
diffusion process starts from the observed (noisy) image, u0 (~x),
and creates a set of filtered images, u (~x, t), by gradually removing
noise and details from scale to scale until, as t → ∞, the image
converges to a constant value. During this process the correlation
between the noise-free image and the filtered image increases as the
filtered image moves closer to the noise-free image. This behavior
continues until it reaches a peak from where the measure decreases
as the filtered image moves slowly towards a constant value. Dur-
ing the same process the correlation between the noisy image and
the filtered image decreases gradually from a value of 1.0 (perfect
correlation), to a constant value, ≈ corr (f, u0), as the filtered im-
age becomes smoother (see Fig. 4). By comparing both measures
we observe that as corr (f, u) reaches its maximum (best possible
reconstructed image), the curvature of corr (u0, u) changes sign.
This suggests that a good stopping point of the diffusion process is
where the second derivative of corr (u0, u) reaches a maximum.

The performance of the proposed stopping criterion can be ob-
served below along with the reconstructed images of ‘Lena’ (Fig. 5
and 6), the ‘Boats’ (Fig. 7 and 8), and the ‘Clown’ (Fig. 9 and 10).
We observe that the stopping criterion is almost optimal, allowing
the diffusion process to stop near the point where the three filter-
ing methods reach their best possible image reconstructions. In our
experiments, we also observed that the stopping criterion overesti-
mate or underestimate the stopping time under two circumstances:
when the noisy image has excess details, e.g. the ‘Baboon’ (see Fig.
11-top), the stopping criterion tends to stop a little too late, caus-
ing some lost of details (this phenomenon has been also observed
in [Mrázek 2001a].) When the noisy image is cartoon-like image,
e.g. the ‘Cameraman’ (see Fig. 11-bottom), the stopping criterion
tends to stop a little too soon, causing a premature output. This is
due to the design of the filters which prevent diffusion across edges.

6 Conclusion

In this paper we propose a new image smoothing and edge detection
technique by combining two very well established methods based
on nonlinear diffusion and bilateral filtering. The new model is
able to obtained the best possible reconstruction of a noisy image
as measured by the correlation coefficient between the noise-free
image and the reconstructed image. In a real-world situation, the
true (unperturbed) image would not be known, hence the corre-
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Figure 4: The correlation coefficient between the noise-free image
and the filtered image increases as the filtered image moves closer
to the noise-free image. When the measure reaches a peak it de-
creases as the filtered image moves slowly towards a constant value.
The correlation coefficient between the noisy image and the filtered
image decreases gradually from a value of 1.0 (perfect correlation),
to a constant value as the filtered image becomes smoother.
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Figure 5: Stopping criterion performance along with the recon-
structed image of Lena using the proposed model. The measure
corr (f, u) suggests stopping the diffusion process after 21 itera-
tions, while the proposed stopping criterion suggests to stop the
diffusion process after 17 iterations.

lation coefficient between this and the reconstructed image could
not be measured. Therefore, we also propose a new and simple
diffusion stopping criterion, based on the second derivative of the
correlation between the noisy image and the filtered image. This
measure allows one to stop the diffusion process close to the point
of maximum similarity between the noise-free image and the fil-
tered image. Furthermore, no knowledge (e.g. noise variance, noise
and signal correlation or lack-off, etc.) is required to implement
the stopping criterion, which makes the method applicable under a
wide range of noise conditions. Some further research has to also
be done to make the stopping criterion suitable for the two excep-
tion cases mentioned above. Also, more rigorous analytical anal-
ysis should be made for a better understanding of the successful
practical performance of the proposed model.
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Figure 6: (top) Stopping criterion performance along with the re-
constructed image of Lena using the Perona-Malik model. The mea-
sure corr (f, u) suggests stopping the diffusion process after 31 it-
erations, while the proposed stopping criterion suggests to stop the
diffusion process after 28 iterations. (bottom) Stopping criterion
performance along with the reconstructed image of Lena using the
Catté-Lions-Morel-Coll model. The measure corr (f, u) suggests
stopping the diffusion process after 18 iterations, while the pro-
posed stopping criterion suggests to stop the diffusion process after
15 iterations.
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Figure 8: (top) Stopping criterion performance along with the re-
constructed image of the boats using the Perona-Malik model. The
measure corr (f, u) suggests stopping the diffusion process after 36
iterations, while the proposed stopping criterion suggests to stop
the diffusion process after 36 iterations. (bottom) Stopping crite-
rion performance along with the reconstructed image of the boats
using the Catté-Lions-Morel-Coll model. The measure corr (f, u)
suggests stopping the diffusion process after 19 iterations, while the
proposed stopping criterion suggests to stop the diffusion process
after 16 iterations.
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Figure 9: Stopping criterion performance along with the recon-
structed image of the Clown using the proposed model. The mea-
sure corr (f, u) suggests stopping the diffusion process after 20 it-
erations, while the proposed stopping criterion suggests to stop the
diffusion process after 18 iterations.
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Figure 10: (top) Stopping criterion performance along with the re-
constructed image of the Clown using the Perona-Malik model. The
measure corr (f, u) suggests stopping the diffusion process after 27
iterations, while the proposed stopping criterion suggests to stop
the diffusion process after 29 iterations. (bottom) Stopping crite-
rion performance along with the reconstructed image of the Clown
using the Catté-Lions-Morel-Coll model. The measure corr (f, u)
suggests stopping the diffusion process after 16 iterations, while the
proposed stopping criterion suggests to stop the diffusion process
after 15 iterations.
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Figure 11: (top) Stopping criterion performance along with the
reconstructed image of the Baboon using the proposed model. The
measure corr (f, u) suggests stopping the diffusion process after 19
iterations, while the proposed stopping criterion suggests to stop
the diffusion process after 27 iterations. (bottom) Stopping crite-
rion performance along with the reconstructed image of the Cam-
eraman using the proposed model. The measure corr (f, u) sug-
gests stopping the diffusion process after 44 iterations, while the
proposed stopping criterion suggests to stop the diffusion process
after 32 iterations.
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