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Abstract 
One of the exciting, ongoing research areas within the fields of bioinformatics and 
systems biology is the elucidation of gene and protein networks. While there is a large 
and important effort towards identifying the specific interactions among genes and 
proteins, there is also a need to understand the dynamics of gene and protein expression 
over time. 

The goal of this study is to use methods from the field of signal processing to 
understand the dynamics of gene expression. For example, many biological processes 
such as the cell cycle, cardiac excitation-contraction and the circadian clock are periodic 
in nature and have underlying genes that are periodically expressed. In the present study, 
Fourier analysis was used on time-course microarrays to find periodic genes. 

Using the Fast Fourier Transform on previously published yeast time-course 
microarray data, it was found that 313 genes show periodic expression with a spectral 
magnitude of at least 0.5. Interestingly, there are four dominant periodicities, one of 
which matches the known yeast cell cycle periodicity. GO annotation and KEGG 
pathway analysis verify the significant presence of periodic cell cycle genes within the 
set of 313 genes found. Thus, Fourier analysis is a valuable tool for understanding gene 
expression dynamics. 

 
 

1 Introduction 
 

Fourier analysis is a standard methodology used for analyzing the frequency 
spectrum of signals. It has been extensively applied to many branches of science and 
engineering, and is built into analysis tools such as Matlab and Mathematica. The field of 
molecular biology, however, which has traditionally relied on more qualitative techniques 
such as Western blotting and immunofluorescence, has only recently seen the use of more 
quantitative methods. In particular, the technology of microarrays, which measure gene 
expression on a high-throughput scale, allow the biologist to answer a whole new set of 
questions. Instead of asking, ‘Does this transcription factor increase the expression of this 
gene?’ biologists are able to probe the question, ‘Exactly how much does this 
transcription factor increase the expression of this gene?’ Furthermore, since microarrays 
are high-throughput, they are also able to answer questions such as, ‘How many genes 
does this transcription factor affect?’ 

With time course microarrays (TCM), which are a set of microarrays taken from 
different time points in a single experiment, scientists are able to employ Fourier 
analysis. If the gene expression pattern of a single gene is viewed over several 
microarrays as a time-domain signal, then Fourier analysis can be used to extract the 
various frequencies present in that signal. If this is done on a high-throughput scale, all 
periodic genes can be identified within a genome – i.e., those genes whose expression 
oscillates at one (or more) frequencies. From there, further experiments can be done to 
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investigate the molecular mechanisms of these gene expression oscillations – what are the 
gene and protein networks underlying the dynamics that we see from the microarray 
data? 

In this short paper, it is hoped that the usefulness of techniques such as Fourier 
analysis for investigating gene expression dynamics and elucidating gene and protein 
networks can be demonstrated. A brief summary of current work in this research area is 
presented (Section 2), with a conclusion of results from the analysis of TCM data 
published by Spellman et al. [1] (Section 3). 
 

2 Background 
 

Living organisms exhibit numerous periodic processes, including cardiac rhythms, 
calcium oscillations, smooth muscle contraction, membrane potential oscillations, 
neuronal signals, glycolytic oscillations, cAMP oscillations, insulin secretion, 
gonadotropic hormone secretion, and the ovarian cycle [2]. In particular, because of their 
ubiquity and importance in maintaining biological homeostasis, a large effort has been 
focused on finding those genes regulated by the cell cycle [1, 3-10] and the circadian 
clock [11-14].  

Typically, some form of the Fourier transform has been used to detect genes specific 
to a biological process such as the cell cycle and circadian clock, where the frequency of 
the process is known. Most studies have had considerable success using the Fourier 
transform in detecting periodic genes. For example, Rustici, et al. [4] were able to 
identify and characterize 407 genes (approximately 8% of the total genome) in fission 
yeast whose expression was cell-cycle periodic. Spellman, et al. [1], whose data were 
used in the present analysis, identified 800 putative cell-cycle genes in synchronized S. 
Cerevisiae cultures – although this large number has been challenged by others [6]. 
Finally, Whitfield, et al. [3] found more than 850 human cell-cycle periodic genes using 
synchronized HeLa cells. Other studies have used more sophisticated techniques that 
account for factors such as unevenly spaced sample data and missing time points [15, 16]. 

The approach used here differs slightly from previous studies. Instead of specifically 
looking for genes of a particular periodicity, there was an interest in finding all 
significant frequencies present within a time course microarray experiment. In a study 
identifying genes controlled by a well-characterized frequency (FRQ)-based oscillator in 
Neurospora crassa cultures, Corea et al. [12] also found three genes oscillating at a 
different frequency, presumably being controlled by a yet uncharacterized oscillator. So, 
in addition to known periodic biological processes, perhaps other frequencies underlie the 
expression of some genes, suggesting the presence of uncharacterized oscillatory gene 
networks. 

Of course, in performing such a global search, it is expected to also find genes 
periodic with the cell cycle or circadian clock, depending on the time interval and sample 
spacing of the data. Indeed, the detection of such genes in agreement with previous 
studies serves as a proof-of-concept of this methodology. In the following section, a 
summary of results is presented from an analysis on the microarray data published by 
Spellman et al. [1]. 
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3 Methods 
 
 Microarray data 

Time course microarray data is taken from published material for the Yeast Cell 
Cycle Analysis Project at Stanford (http://cellcycle-www.stanford.edu), analyzed in 
Spellman et al. Briefly, gene expression data were obtained every 7 min for 119 min 
from yeast cells synchronized by α-factor arrest. Expression fold change was 
measured by comparing synchronized cells to a non-synchronized control group. 
Intermediate missing time points were filled in using linear interpolation. Genes with 
two or more consecutive missing time points were discarded from further analysis. 
Genes with initial (0 min) or final (119 min) missing time points were filled in with 
the adjacent values (either 7 min or 112 min data value, respectively). 
 

 Fourier analysis 
Significant frequency components were found using the fast Fourier transform 

(FFT). Briefly, FFT is a method used to compute the discrete Fourier transform of an 
evenly-spaced finite length signal. It converts a signal in the time domain into the 
frequency domain, showing the magnitude of each frequency component present 
within the signal. The formula is given by 
 

X[k] = 1
N

x[n]e− jk(2π / N )n

n= 0

N−1

∑  

 
where N is the signal length and k is the frequency. The FFT function in the 
MATLAB Signal Processing toolbox was used to find significant frequency 
components within the microarray data. 
 Significant frequency components were chosen to be those frequencies X[k] with 
spectral amplitude X[k] > 0.5 , corresponding to a 2  peak-fold change according to 
the formula 

X[k] = log2(peak fold change)  
 

where the fold change is the ratio of experimental and control expression values. 
Future studies could decrease or increase the stringency required for significance. 
 

 Gene annotation and pathway analysis 
Gene annotation was done using the S. Cerevisiae genome database 

(http://www.yeastgenome.org). Heat maps and significant GO terms were obtained by 
using analysis tools provided online at Database for Annotation, Visualization and 
Integrated Discovery (DAVID; http://david.abcc.ncifcrf.gov, [17]), the Gene 
Ontology (http://www.geneontology.org/, [18]) and KEGG pathway analysis 
(http://www.genome.jp/kegg/, [19]). 
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4 Results 
 
Global gene expression data from time course microarrays were taken every 7 

minutes for 119 minutes from yeast synchronized using α-mating factor (for details, see 
[1]). Fourier analysis using MATLAB extracted genes whose expression signals had 
significant frequency components. The genes were then identified, organized and 
annotated. 

 
Identification of significant periodic genes 
 
Genes with frequency components of magnitude greater than 0.5 were found, 

identified and clustered. Table 1 shows the number of genes found with each periodicity. 
Note that many genes have more than one frequency component present within their gene 
expression signal, indicating either multiple underlying cyclic processes or sub-
populations of cells oscillating at different frequencies. 

 

 
Table 1. Periodic genes present with F(ω) > 0.5 

 
The length of the cell cycle depends on many factors, such as cell lineage, availability 

of nutrients, and the presence or absence of signaling molecules that promote or inhibit 
growth. Data on cdc-15-based synchronized yeast cells from Spellman, et al. [1] suggest 
that the S cerevisiae cell cycle ranges from 50 – 90 minutes. Cho et al. [10] measured a 
yeast cell cycle of approximately 80 minutes. Based on the results of Table 1, it was 
hypothesized that the yeast synchronized with α-mating factor had a cell cycle of either 
52.58 min or 70.03 min. Although the eventual goal is to use Fourier analysis to uncover 
novel gene oscillatory networks, the first step is to verify the correctness of the 
methodology by identifying known oscillatory networks such as the cell cycle. Thus, 
functional annotation clustering using the DAVID bioinformatics database, Gene 
Ontology (GO) annotation  and KEGG pathway analysis were used to annotate the genes 
identified and their respective networks. 
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 Annotation of genes using DAVID, GO and KEGG 
 

Genes of the two most abundant periodicities, 52.28 and 70.03 min, were annotated, 
with the hypothesis of finding an over-representation of processes involved with the 
cell cycle. Tables 2 and 3 show the 40 most represented biological processes, where 
the genes are classified according to their GO annotation. 
 

 
 

Table 2. GO annotation of genes with periodicity 52.28 min 
The descriptions of each column are as follows: Category: GO type; Term: GO biological process or 
classification; Gene Count: the number of genes of a biological process found; % found: the percentage 
of genes of a biological process found; PValue: Fischer Exact p-value. 
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Table 3. GO annotation of genes with periodicity 70.03 min 
 

Note that, as hypothesized, the cell cycle is significantly represented, as well as many GO 
processes associated with various stages of the cell cycle (e.g., DNA replication, 
cytokinesis, cell wall, cell division). Table 4 shows the genes that are represented in the 
KEGG pathway entry for the cell cycle (entry ‘SCE04110: CELL CYCLE’ in Table 3).  
 

 
Table 4. KEGG pathway analysis of the yeast cell cycle. 

Red stars indicate the positive detection of a significant periodic gene within the data set. Twenty of the 
genes represented in the KEGG pathway (14.49%, p-value 2.84x10-9) were found. Green boxes are genes 

that have a detailed gene entry within the DAVID database.  
 
The stringency of fold change required for significance was lowered from 2  to 

1.25, and subsequent Fourier analysis revealed the presence of 456 and 471 genes with 
periodicities of 52.58 and 70.03 min, respectively (data not shown). It is likely that even 
more significant representation of cell cycle processes will be found among these genes. 
 

5 Conclusion 
 
This brief analysis demonstrates the promise of using signal processing techniques 

such as Fourier analysis as a tool for studying gene expression data from time-course 
microarrays and discovering genes involved in periodic biological processes. Future 
directions include (1) annotating and analyzing the genes within this data set underlying 
other periodicities; (2) analyzing other, more recent time course microarray datasets; (3) 
developing algorithms that can accurately handle missing, unevenly spaced and short 
time course data; and (4) using more sophisticated signal processing and statistical 
methods to better identify periodic genes. 
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