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Neutron stars are among the most enigmatic objects in the Universe. They possess
the mass of our sun but are several billion times smaller than our sun. The matter in
the cores of neutron stars is therefore compressed to densities that are several times
higher than the density of atomic nuclei. Under such extreme physical conditions the
conventional building blocks of matter as we know them (atoms, protons, electrons)
give way to new and widely unexplored states of matter, such as superconducting
quark matter and novel particle condensates searched for in the most powerful ter-
restrial collider experiments. In this paper we study the thermal evolution of neutron
stars in order to explore the properties of ultradense matter and the inner workings
of neutron stars. The calculations are performed in the framework of Einstein’s
theory of general relativity, since neutron stars curve the geometry of space-time so
strongly that classical Newtonian theory of gravity fails to describe their properties.

In this model the strong interaction is described by interacting baryons through
the exchange of a medium range attracting σ meson and a short range repulsive ω
meson. To describe such a model we must take a Relativistic Mean Field approach.

The field equations derived from the Lagrangian Density functions at the mean field
level are given by
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The function S(meff,B, kF,B) is expressed with the use of the integral
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where JB is the spin projections of Baryon B, kf,B is the Fermi momentum of type B.

nB is the particle number density in units of fm−3
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γB stands for the spin-isospin degeneracy factor which equal 4 for nucleons.

meff,B is the effective baryon mass generated by the baryon and scalar field
interaction and can be defined as

meff,B = mB − gσBσ0 . (6)

Now that we have acquired a solution for the effective mass of the system.The energy
density and pressure can be obtained. The energy density is given by
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where ǫB is defined as
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The total pressure of the system is given by
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where pB is defined to be
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It is important to note that our Lagrangian contains 6 parameters. They are the
meson-nucleon coupling constants gω and gσ; the meson masses mω and mσ; and the
meson-meson self coupling constants g3 and g4. However, for our purposes we only
looked at the linear terms and neglected any non-linear effects due to the g3 and g4

meson-meson self coupling constants.

Since we are dealing with a two particle many body interaction it is convenient to
introduce a term δ that accounts for an asymmetry in the number density between
protons and neutrons.

δ is given by

δ =
nN − nP

nN + nP
(11)

where nN and nP are the corresponding number densities for neutrons and protons.

We show here the composition for the neutron star matter.

Figure 1: Composition for Neutron Star Matter.

Here we display some of the equations of state for nuclear matter for different pa-
rameter sets.

Figure 2: Equation of State for Neutron Star Matter

We use the previous equations of state as an input for a code the solves the General
Relativistic hydrostatic equilibrium equations and obtain the star structure. Here
we plot some of the families of stars obtained.

Figure 3: Mass Radius Diagram

The thermal evolution of a Neutron Star is strongly dependent on its composition,
because of that understanding how a Neutron tar cools down might help us to con-
strain further the equation of state. The General Relativistic Thermal Evolution
equations of a Neutron Star are:
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We solved these equations for the equations of state studied in this work and obtained

Figure 4: Thermal Evolution

In this project we have studied several different equations of state. We have tried
several parameters set, always constrained by nuclear matter properties. As expected
the neutron stars properties strongly depend on the equation of state.

One of the objectives of this work was to perform a threefold investigation: we
starded studying the neutron star matter and composition, moved to neutron star
structure and ended by studying the thermal evolution of the star. All of these pro-
cesses are extremely important in order to build a more precise theory of Neutron
Stars. By comparing theoretical predictions with observed data we can constrain
the equation of state for these objects, which will allow us to understand better the
fundamental physics that govern our universe.
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