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A consistent microscopic theory of the atomic nucleus is necessary to explain a wide range of nuclear phenomena and to predict nuclear behavior

that cannot be measured experimentally. Over the past decade, theoretical investigations have fundamentally shifted from phenomenological
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The No-Core Shell Model (NCSM) is an ab initio approach that has been successful in describing light nuclei. Nuclear properties are obtained

through diagonalization of the Hamiltonian matrix, which is large (dimension > 108) and sparse. The computational effort increases exponentially W. ERICH ORMAND

with nucleon number using a 2-body Hamiltonian, and becomes particularly difficult when including 3-body forces. New algorithms and load Lawrence Livermore National Laboratory

balancing techniques are needed to scale this method for larger nuclei (A > 16). We analyze the computational challenges of REDSTICK, a This work performed under the auspices of the University of California,

nuclear shell model program, and implement several techniques to scale REDSTICK to investigate high p-shell and low sd-shell nuclei. Lawrence Live’”3;?7’:g;‘j’E":éj’:°L’J"’é°F'aVL‘jg’gS°;_”;§;‘6N6°1-
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To optimally apply the on-the-fly technique, unique algorithms are

To continue these investigations using 3-body forces, considerable ) application, ~an  advanced
. To scale this problem, storage of the workload distribution method is necessary to overcome these challenges. My current work
improvements need to be made to nuclear shell model programs. matrix elements must be addressed. necessary. involves devising and implementing new approaches to allow for

investigations of high p-shell and low sd-shell nuclei.



