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Introduction Numerical Scheme

Conclusions & Future Works

Numerical Results and Simulations

Governing Equations
We consider a sphere moving  either horizontally or 
vertically at a constant speed in a uniformly stratified 
fluid and the density is diffusive. The dimensionless 
governing equations are
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where t is the time, u = (u, v, w) is the velocity,  p is 
the pressure, ρ the density, ẑ the unit vertical vector. 
The dimensionless numbers, Reynolds (Re), Froude 
(F), Schmidt (Sc) and Pléclet (Pe) are defined as
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here, U is the velocity, N the Brunt-Väisälä frequency, a the radius of the sphere, μ the 
viscosity, ν= μ/ρ is the kinematic viscosity, κ the diffusivity coefficient. For each kind of 
problem is needed to impose suitable boundary conditions, they are:
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In whatever case as upstream is located far enough from the sphere, these conditions are fixed 
to its unperturbed value and time independent. The  total drag coefficient CD = Cf + Cp
(friction and pressure), where

We model the flow past a sphere in a viscous, incompressible low Reynolds number stratified 
fluid. The flow has uniform velocity and linear stratification. The governing set of equations, 
Navier-Stokes, describing the above flow were numerically solved by direct integration using 
boundary-fitted coordinates and a Pressure Correction Method with finite-difference 
approximations. In order to solve the pressure linear system with high accuracy we use the 
BiCGstab method. Numerical experiments are performed for different flow conditions by 
varying the Reynolds number. Results are presented for density and velocity fields. Simulated 
sphere drag is also compared to the classical drag curve cited in the literature

Computational Scheme

Figure 1: A schematic of horizontal problem 

Figure 2: A schematic of vertical problem

The discretization of the domain use a general 
curvilinear coordinate, generating a no orthogonal 
boundary fitted grid. The external boundary of the 
grid is elliptic with a size of 20 sphere diameters in 
the vertical and 40 sphere diameters in the 
horizontal. The grid consisted of 131×91×48       
(ξ× η× ζ) mesh points in (z, r, θ) space 

Model results, F=200
Re = 0.1, Cd ≅ 225
Re = 0.2, Cd ≅ 116
Re = 0.4, Cd ≅ 62
Re = 0.6, Cd ≅ 43
Re = 0.8, Cd ≅ 33
Re = 1.0, Cd ≅ 28.7
Re = 200, Cd ≅ 0.806

Re = 1
F = 0.6 F = 2.0 F = 20 F = 200
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with i denotes the mean flow direction (vertically upward), nk is the component of the unit 
vector normal to the sphere surface and dS is the area unit of the surface integral.

We use a PCM (Pressure Correction Method), then is necessary define a “pressure diagnostic 
Poisson equation”
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with suitable boundary conditions. We use a linear implicit Euler method to split the time 
development, and all spatial derivative are approximated by the second order 11-stencil finite 
different scheme obtaining the linear systems

From H. Knaus, J. Maier et al. Advantages of Applying Boundary-Fitted 
Grids to the Simulation of Pulverised Coal-Fired Utility Boilers with Mixed 
Staging Burners.  (e-mail: knaus@IVD.Uni-Stuttgart.DE)

Figure 4. A detail of the grid near the sphere in physical space

Figure 3. Mapping from physical to computational 
domain, using general curvilinear coordinates

The numerical results were compared with 
experimental results, when F=200 (Fluid no 
stratified). The numerical result agree well in a 
wide range of Re.
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Figure 5. Density surfaces in horizontal and vertical planes 
for Re = 1: a) F = 200, b) F = 2, c) F = 1.25 and d) F = 0.7. 
Density contours are drawn for ρ – z = ±0.2, ±0.4, ±0.6, etc. 

a) b)

c) d) Re =1 CD

F = 20 28.05
F = 2 29.09
F = 1.25 30.18
F = 0.7 32.00 

Table 1.  Drag Coefficient for different 
values of Froude.

Different Profiles of Density Perturbation  and 
values of Drag Coefficient are shown whether 
vertical and horizontal fluid.

Greater stratification higher drag value.
More detailed study when density plot does  not show 
separation of fluid .
Use another techniques to time splitting, to achieve more 
robustness.
More efficient implementation of code.
Simulate with some microorganism shape.
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Where the pressure system does not change, but must be solve with high accuracy. A 
BiCGstab method preconditioned with a dual threshold incomplete LU factorization is used. 
Each velocity component and density systems change in time, and they are solved using SOR 
applied in the mesh.


