
First, we start with the 2D NLS:

where the laplacian in polar coordinates is:

We can define the Action functional as:

where the Lagrangian density is:
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The Nonlinear Schrödinger Equation (NLS) is used to describe 

various phenomena including Bose-Einstein Condensates (BECs), 

light propagation in nonlinear optical fibers and nonlinear 

crystals.  

An interesting property of light is that of “twisted light”.  This is 

when light is twisted about its axis, and has a topological charge 

which tells how many times it twists around for each wavelength.  

Such light is called an optical vortex, and has the property that the 

center is identically zero in intensity, and hence looks like a “ring” 

of light.  A higher charge vortex will result in more angular 

momentum, and thus a wider radius to the ring as shown above.

When such vortices propagate through a nonlinear crystal, they 

exhibit azimuthal modulational instability (MI) as depicted below, 

and their dynamics can be described by the NLS.  These vortices 

have potential applications in cryptography and quantum 

computing.

Azimuthal Modulational Instability

It would be useful to be able to understand the MI of such 

vortices.  The method for this understanding should be general 

enough to be able to expand the ideas to include other 

nonlinearities and potentials in the NLS which would correspond 

to better physical models in this as well as other vortex solution 

applications such as in BECs.  This project plans to do just that.

In order to investigate the MI of the vortex solutions we set up our 

2D problem in such a way that it becomes a quasi-1D problem, 

and then do a stability analysis in the fourier domain to predict the 

growth of the azimuthal modes.  We find a steady state vortex 

solution by using numerical optimization, and then run full 2D 

simulations on a polar grid to test the predictions made by the 

theory.

Now, we assume a separable steady-state solution of the form:

Plugging this solution into the Lagrangian, we have:

where all the radial integrals become the following constants:

We can now use the variational principle:

which leads us to a quasi-1D azimuthal equation of motion, which, if 

we perform the following rescaling

becomes:

The results are very close to those predicted.  We believe that 

the small discrepancy is due to the fact that we assumed a 

purely separable solution, which is a good approximation of 

what the full 2D modes are, but in reality (as can be seen in the 

figure below) the modes have some radial-azimuthal coupling, 

which seems to be having an effect on the growth rates, 

making them higher than predicted.

That being said, the method described here does appear to be 

quite useful in approximately describing and predicting the MI 

of vortices.  Thus, the technique used here can be applied to 

nonlocal, saturation, or other alternative nonlinearities, as well 

as problems including an external potential.
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To obtain the radial profile of a steady-state vortex solution, we first 

plug in a separable ansatz into the NLS to get:

We then use a modified Gauss-Newton optimization  algorithm: 

We define a Merit Function:

Then we can iterate our solution as:

where the step direction is:

and the step length is:

For an example case, we use the initial guess:

We get the following result in 55 steps:

We simulate the system on a polar grid using finite difference.  For 

the time derivative, we use the 4th order accurate Runge-Kutta:

combined with the following 2nd order differencing in space:

We calculate the growth rate of a mode as follows: 
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NUMERICAL METHOD FOR 

STEADY-STATE SOLUTION

NUMERICAL METHOD FOR 

FULL 2D SIMULATION

For the stability analysis, we start by perturbing a plane-wave  

solution with a complex time-dependant perturbation of the form:

Plugging this into the A-equation, we get a pair of coupled PDEs 

describing the motion of the perturbation.  To study the growth of 

azimuthal modes, we first expand u and v in a discrete Fourier series:

where the amplitudes of each mode are given by the transforms:

If we apply these transforms to the PDEs, and set ourselves on a 

rotating frame by a rescale of time, we arrive at a coupled pair of 

ODEs which govern the amplitude of each mode:

If we linearize the system, we can put it into matrix form as:

The Eigenvalues (i.e. growth rates for each mode, with time 

rescaling taken into account) are:

Where the critical mode (where all modes below it are unstable) is 

given by:

STABILITY ANALYSIS

THEORETICAL PREDICTIONS 

AND NUMERICAL RESULTS

As an example case, we set m=3 and run the simulations.  The 

following is a plot of the eigenvalues/growth-rates that the 

theory predicts plotted with the numerical results for each 

mode:


