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Abstract

In this work we extend the CCBA to produce a parallel-iteratively mesh generator. The CCBA or
Convex-Combination-Based-Algorithm (presented in ACSESS 2007) uses a mesh-size function
and convex combinations on local polytopes to change the position of the nodes of an initial 2
mesh. This process is repeated iteratively and stops when the max norm between two o : = . CEEE
consecutives meshes is smaller than a given threshold. The parallelization is obtained by dividing : : =
the initial mesh into as many submeshes as processors available and dealing with each submesh
in a different processor. This so-called mesh decomposition does not depend on the physical
domain of the problem, which is the main difference and the main advantage over domain
decomposition-like techniques for parallelization. We also present a way to reduce overhead
while preserving the property of non-folding of the original sequential algorithm. Several
examples of 2D meshes on complex domains show the potential of the technique for constructing
non-uniform quad meshes.

CCBA
We start with an initial grid constructed over the domain, Q. Then, for each point, p, of the . ::> Mesh decomposition
mesh we consider a convex polytope V c Q that contains p. If V is generated from points v; )
then, p is updated according to
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wihigre 4, are stimated With the mesh-size fgnction . In addition, the duplication of rows reduces idle time and avoids doing
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! -lo-ong, pev. VEL._p.£s u > s Inturn, 4; >0 Tht Because calculations in the convex-combination based algorithm are computation are the three main sources of overhead in parallel computation. s
property guarantees that non-folding will be produced. done locally, the CCBA can be easily parallelized. We work with a  \1och qecomposition e
SIMD (Singular Instruction Multiple Data) problem and we consider the A i il the itidl hi 4 4 1.4 h ofidh y T
s i f [ ) e idea is to divide the initial mesh into sub-meshes and assign each of these pieces to —
Themeshzgige functidn following information as input values: Some i a processor. The size of each sub-mesh will be proportional togthe computationgl POWEr  oosioo ot e,
The mesh-size function, f, is a positive function defined on Q. Hence, f is independent P, total number of processors to be used, Toul b SR ol of the corresponding assigned processor. Thus, we are able to adapt the algorithm to ! Speed up
of the numbers of points of the grid, which provides simplicity and versatility to the n: rows of the grid, ’”T“q 2, heterogeneous clusters of computers. A B0 ity OEE SRS B
model. For regions of high density, the mesh-size function f has small values, whereas m: columns of the grid. ko e Mesh decomposition has several advantages over mesh decomposition. Domain decomposition, as its name
for regions of small density, f has bigger values. The mesh-size function.can"be b WillbeTratten as fllow o o 0w | SUGGeSs, means dividing the given domain, €, into several pieces. This can be a very difficult task depending on
obtained through different ways: given a priori, based on the geometry of Q, based t A the complexity of Q. Mesh decomposition, on the other hand, is geometry independent. Since the initial mesh
on errors from differential equations or combination of these, for mention just a few. R=P+1, LR (and every mesh, actually) is stored in a matrix, dividing this mesh simply means selecting a number of rows
Example 1 shows a mesh-size function, f;, obtained from where P is the number of processors that will | > = and/or columns of the matrix. This is done automatically. For instance, example 2 presents a very complex non-
work modifying the mesh points, and the [ 05" convex domain. However, for this case mesh decomposition is as easy as it is for example 1, which has a very

fL(xy) =min{g,(x, ), 9, (% ¥), gs(x ¥) } number 1 stands for the master processor. simple square-shape domain.

where The first we do-is mesh decomposition; Which consists of dividing After d_oing domain decomposition each piece of the decompqsed domain remgins unchanged during_ the mesh
he initial mesh in as man rocesso'rs available are. Then. we generation process; local meshes are adapted to the sub-domains. In contrast, in the mesh decomposition case,
9,(x% y):,3><‘ y+3‘+,2 :1'et !E' tla the P pi £ th y ‘: | h p y Yh each sub-mesh adapts itself to the domain. They can change independently, facilitating the refinement procedure.
Istribute the 1 pleces ot the Inftial Mesh among F Processors Where™ -y, ¢4, appreciate this in example 1. Each sub-mesh is a uniform rectangular-shape mesh but, at the end of the
9,(%y) =2x4(x=3)* +(y-2)* +.2 they will be modified. During mesh decomposition we also replicate oo, saneration process, each one presents a very different shape resulting from the mesh-size function used for
> 3 certain rows. The last two rows of processor j will be the first two mesh refinement.
95(X,y) =.15x/(x+3)" +(y—-1)* +.07 rows of processor j+1, where j=1,...,P-1.
. X . . . Replicated rows Each processor works independently and only interacts with other Conclusions and future works
Example 2 shows a mesh-size function, f,, obtained by implementing an Red line only changes in processors at the end of each iteration, to exchange the replicated
inverse distant weighting algorithm with R-functions. An R-function works P_mC"SSO'i”- . rows. Processor j will update its last row with the second row of . 4 . . .
as a Boolean switching function and can be combined in a fully automatic Blue line only changes in processor ] +1: e{nd proczssor §+1 will update its first row with the The technique produces meshes of hlgf-] quality that are smo_oth and can be_ adapted to t#fferent domaln_s and _
way, to obtain an implicit representation of the domain. Processog). row prior o the last row of processor j: By proceeding this way, €ach different levels of refinement. The implementation of a mesh-size function

Orocessor interacts with,its-two closest heighbors (processors) and at offers_flgxibility to control the refinemer]t of the [nesh. The paral]elization of
dach itefation-ne-fodings are glaranteed, —2— | ) A4 - the original CCBA can be done very easily by using a geometry-independent

: - tion mesh decomposition technique, instead of using domain decomposition. The
duplication of the boundaries of the sub-meshes, on the other hand,
guarantees that unfolded meshes will be produced.

We expect to develop a deeper analysis of the speed up and scalability
of this parallel mesh generator. Also, we will study the possibility of
extending the algorithm for constructing 3D meshes.
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