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Objective
Recent theoretical and experimental work has shown that

unidirectional coupling can induce oscillations in overdamped

and undriven bistable dynamic systems that are non-oscillatory

when uncoupled; in turn, this has been shown to lead to new

mechanisms for weak (compared to the energy barrier height)

signal detection and amplification. The potential applications

include fluxgate magnetometers, lectric field sensors, and arrays

of Superconducting Quantum Interference Device (SQUID)

rings. In the particular case of the fluxgate magnetometer, we

have developed a “coupled-core fluxgate magnetometer”

(CCFM); this device has been realized in the laboratory and its

dynamics used to quantify many properties that are generic to

this class of systems and coupling. The CCFM operation is

underpinned by the emergent oscillatory behavior in a

unidirectionally coupled ring of wound ferromagnetic cores,

each of which can be treated as an overdamped bistable

dynamic system when uncoupled. In particular, one can

determine the regimes of existence and stability of the

(coupling-induced) oscillations, and the scaling behavior of the

oscillation frequency. More recently, we studied the effects of a

(Gaussian) magnetic noise floor on a CCFM system realized

with N = 3 coupled ferromagnetic cores. In this work, we first

introduce a variation on the basic CCFM configuration that

affords a path to enhanced device sensitivity, particularly for

N > 3 coupled elements.

Fluxgate Magnetometers
Fluxgate magnetometers are considered to be the most

cost-efficient magnetic field sensors for applications that require

measuring relatively small magnetic fields in the 0.01mT regime.

Originally developed around 1928, today’s highly specialized

devices can measure magnetic fields in the range of 1-10

pT/
√

Hz for a variety of magnetic remote sensing applications.

In its most basic form, the fluxgate magnetometer consists of

two detection coils wound around two ferromagnetic cores

(usually a single core configured as an open-ended “racetrack”)

in opposite directions to one another.

(Left) Basic design of a traditional fluxgate magnetometer.
(Right) Sensitivity ranges for different magnetometers.

Residence Time Description
In our ongoing work (on the single core fluxgate as well as the

CCFM) we rely on a readout mechanism, based on a threshold

crossing strategy, that consists of measuring the “residence

times” of the ferromagnetic core(s) in the two stable states of the

potential energy function. When the potential energy function is

skewed due to the presence of a target dc signal, the residence

times are no longer equal. Then either their difference or ratio

can be used to quantify the signal. The sensitivity of this

residence times distribution (RTD) based readout has been

shown to increase with lowered bias frequency and amplitude;

these conditions are the opposite of the requirements for

enhancing sensitivity in traditional readouts, so that lower

onboard power as well as far simpler electronics can be

implemented, with benefit, for this (time domain based) readout

strategy.

Background of Dynamics:
Standard Orientation
A conventional (i.e. single core) fluxgate magnetometer can be

treated as a nonlinear dynamic system by assuming the core to

be approximately single-domain, and writing down an equation

for the evolution of the (suitably normalized) macroscopic

magnetization parameter x(t): ẋ(t) = −∇xU(x) in terms of the

potential energy function

U(x, t) = x2(t)/2− c−1 ln cosh c[(x(t) + A sin ωt + ε(t)], where c is a

temperature-dependent nonlinearity parameter, which controls

the topology of the potential function: the system becomes

monostable, or paramagnetic, for c < 1 corresponding to an

increase in the core temperature past the Curie point. The

overdot denotes the time-derivative, A sin ωt is the known bias

signal that switches the core dynamics between the potential

minima, and ε(t) is an external target signal (taken to be dc

throughout this treatment).

The CCFM is, then, constructed by unidirectionally coupling N

(odd) wound ferromagnetic cores with cyclic boundary

condition, thereby leading to the dynamics,

ẋi = −xi + tanh(c(xi + λxi+1 + ε)), i = 1, . . . , N mod N,

where xi(t) represents the (suitably normalized) magnetic flux

at the output (i.e. in the secondary coil) of unit i, and ε ¿ U0 is

an external dc “target” magnetic flux, U0 being the energy

barrier height (absent the coupling) for each of the elements

(assumed identical for theoretical purposes). It is important to

note that the oscillatory behavior occurs even for ε = 0, however

when ε 6= 0, the oscillation characteristics change; these changes

can be exploited for signal quantification purposes, the

motivation for this work. A theoretical analysis shows that the

system exhibits coupling-induced oscillatory behavior with the

following features:

(1) The oscillations commence when the coupling coefficient

exceeds a threshold value λc = −ε− xinf + c−1 tanh−1 xinf , with

xinf =
√

(c− 1)/c; note that in our convention, λ < 0 so that

oscillations occur for |λ| > |λc|.

(2) The individual oscillations (in each elemental response) are

separated in phase by 2π/N , and have period

Ti = Nπ
(
1/
√

λc − λ + 1/
√

λc − λ + 2ε
)
/
√

cxinf .

(3) The summed output oscillates at period T+ = Ti/N and its

amplitude (as well as that of each elemental oscillation) is always

suprathreshold.

(4) The RTD can be computed as

∆t ≈ π
(
1/
√

λc − λ− 1/
√

λc − λ + 2ε
)
/
√

cxinf , which vanishes

(as expected) for ε = 0.

(5) The system responsivity, defined via the derivative ∂∆t/∂ε, is

found to increase dramatically as one approaches the critical

point in the oscillatory regime.

The New Configuration:
Alternating Orientation
Laboratory experiments seem to indicate that the sensitivity of a

CCFM-based system of fluxgates increases by simply alternating

the orientation of each individual fluxgate. We call this new

arrangement a CCFM system with Alternating Orientation (AO).

We should clarify that the coupling scheme remains the same,

i.e., unidirectional coupling via induction. The only feature that

changes is the direction at which the individual fluxgates are

aimed for signal detection purposes. Thus the sign in front of

the target signal ε alternates between + and − so that the

governing equations (for the deterministic system) become,

ẋi = −xi + tanh(c(xi + λxi + (−1)i+1ε)), i = 1, . . . , N mod N. (1)

The oscillations emerge via global bifurcations of a heteroclinic

cycle connecting six saddle-node equilibrium points: (1,−1,−1),

(1, 1,−1), (−1, 1,−1), (−1, 1, 1), (−1,−1, 1), and (1,−1, 1).

Furthermore, solution trajectories are confined (as is typically

the case with heteroclinic cycles) to the intersection of certain

invariant planar regions given by (with λ < 0):

δi = {xi : λxi < 1, x(i+2 mod 3) = −1}, i = 1, 2, 3,
δi = {xi : λxi > −1, x(i+2 mod 3) = 1}, i = 4, 5, 6.

The saddle-node points exist only for λ > λAO
c and are

annihilated when the periodic solutions appear.

Through analysis, involving existence properties on the

saddle-node points for cyclic behavior, it was found that there

exists a value of λ,

λAO
c = −ε +

1

c
ln(
√

c +
√

c− 1)− tanh(ln(
√

c +
√

c− 1)), (2)

such that for all λ < λAO
c , λAO

c < 0, that all xi(t) will exhibit

oscillatory behavior.

Calculation of the Period and
Residence Times for the AO CCFM
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Due to behavior of the neighboring fluxgates we may rewrite,

for a small time interval, x3(t) as (when N = 3)

ẋ3(t) = −x3 + tanh c(x3 + λ + ε). (3)

From here we can calculate the time (t1) it takes x3(t) to go from

+1 to 0 as

t1 =

∫ 0

1

dx3

tanh c(x3 + λ + ε)− x3
, (4)

This integral cannot be calculated analytically, however by using

consideration of the behavior of x3(t) we can approximate the

integral as

t1 ≈
∫ ∞

−∞

dx3

λc3 − λ + cxinf(x3 − xm3)2
=

π√
cxinf

√
λc3 − λ

, (5)

where λc3 = −ε− xinf + 1
c tanh−1 xinf , and xm3 = λc3 − λ + xinf

(xinf =
√

(c− 1)/c)

Curiously, this calculation is valid for all ti for i = 1, 2, 3. We

must now calculate the values ti for i = 4, 5, 6.

Following a similar prescription we find that

t4 ≈
∫ ∞

−∞

dx3

λc3 − λ + 2ε + cxinf(x3 + xm33)2
=

π√
cxinf

√
λc3 − λ + 2ε

.(6)

Noting that the period is Ti = 3(t1 + t4) for i = 1, 2, 3 and the

residence time difference is

∆1t =
3π√
cxinf

[
1√

λc3 − λ
− 1√

λc3 − λ + 2ε

]
. (7)

and for i = 2, 3

∆it =
π√
cxinf

[
1√

λc3 − λ
− 1√

λc3 − λ + 2ε

]
. (8)

We note the absence of the multiplier of three in the residence

time difference for i = 2, 3 which gives a result identical to that

obtained for the Standard Orientation. Generalizing this to

arbitrarily large N (odd) we find that

Ti =
Nπ√
cxinf

[
1√

λc3 − λ
+

1√
λc3 − λ + 2ε

]
, (9)

and,

∆1t =
Nπ√
cxinf

[
1√

λc3 − λ
− 1√

λc3 − λ + 2ε

]
. (10)

Recall that ∂∆t/∂ε measures the sensitivity of a CCFM (in the

standard orientation). It follows that

∂∆1t

∂ε
= N

∂∆t

∂ε
,

where ∆t is the Residence Time Difference for the Standard

Orientation.

Future Work
Future work with the Alternating Orientation Coupled Core

Fluxgate Magnetometer has many different routes of interest.

Among the most prominent/important are the following

1. Investigation of the effects of an ac external signal on the
dynamics of the system.

2. Investigation of the noise one the dynamics of the system
with both dc and ac external signals and in the absence of
both.

3. A full comparison, in all cases, of the AO and SO orientations
and the resulting dynamics.

4. Exploration of other known possible couping schemes and
their effects on the sensitivity of the system.

5. Calculation of the Residence Times in the presence of Noise.
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