Avian Flu Grid: International Collaborative Environment for Team Science on Avian Influenza

Yusuke Tanimura9, Karpjoo Jeong3, Kai Nan5, Xiaohui Wei4, Jysoo Lee10, Maqsudul Alam2, J. Andrew McCammon1,11, Wilfred W. Li1, Peter W. Arzberger1

University of California, San Diego1, University of Hawaii at Manoa2, Konkuk University3, Jilin University4, Chinese Network Information Center5, National Taiwan University6, University of Science, Malaysia7, Tsukuba University8, National Institute of Advanced Industrial Science and Technology9, KISTI Supercomputer Center10, Howard Hughes Medical Institute11

Abstract

The avian influenza virus type A, especially subtype H5N1, is becoming the world's largest pandemic threat due to its high virulence and lethality rate in birds, quickly expanding host reservoir, and high rate of mutations. The two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA) of influenza virus play important roles in the interactions with cellular receptors containing terminal N-acety neuraminic acid (Neu5Ac) or NANA moieties, aka, sialic acids. The approved anti-influenza drugs, oseltamivir and zanamivir, inhibit H5N1 infection by targeting the NA active site, thereby blocking the release of newly formed viral particles. However, research has shown that antigenic drift may give rise to new strains that are resistant to existing NA inhibitors and antigenic shift could give rise to new variants of the flu virus. Thus, it is crucial to design novel HA- and NA-targeted inhibitors, which can be used in combination for optimal prophylaxis and treatment.

The Relaxed Complex (RC) scheme and Molecular Dynamics (MD) simulations have been applied on the two target proteins to capture key protein dynamics information and accounting for receptor flexibility. Research is under way to take advantage of novel loop flexibilities and changing cavity shapes adjacent to NA active site to discover novel NA inhibitors that may work in a way similar to the HIV integrase inhibitor, raltegravir, inspired by the RC/MD simulation procedures. Further investigation involves statistical cluster analysis for rational selection of representative HA/NA protein structure snapshots, which are used in the virtual screening with synthetic and natural compound libraries. Finally, the binding energies of the high scoring hits are re-scored using Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) method before experimental validation and subsequent lead optimization.

Computational Methods

Glyco-M*Grid
http://www.mgrid.or.kr

Integrative Effort: Avian Flu Grid

Acknowledgements

The project is supported by TATRC Award 881XVMH-07-2-0014, and also partially supported by respective institutions and their funding agencies through collaborative research and development activities. PRAGMA is supported by NSF grant no. INT-0314015 and OCI-0627026.

Glyco-M*Grid

A grid portal-based integrated environment for e-Glycomics, provides a powerful tool for tackling the glycobiology in the avian flu systems

PRAGMA Data Infrastructure

http://datafarm.apgrid.org

2.58 TB disk space is provided by 43 Gfarm filesystem nodes from 14 organizations in the Asia-Pacific region.

PRAGMA testbed

- Computational server
- Storage server
- AIST, ASGC, AIST, CSF4, NICT, PRAGMA testbed, TeraGrid, AIST, NICT, TeraGrid, AIST, CSF4, NICT, PRAGMA testbed, AIST, AIST, CSF4, NICT, TeraGrid, AIST, CSF4, NICT, PRAGMA testbed, AIST, AIST, CSF4, NICT, TeraGrid, AIST, CSF4, NICT

For more information, please visit the project website at http://avianflugrid.pragma-grid.net

CSF4 meta-scheduler
(http://gcsf.sourceforge.net)

PRAGMA portal environment
(https://portal.pragmagrid.net/9443)

Opal-based application specific web services
(http://nbor.net/services)

Scientific Data Grid
(http://pragmagrid.sdg.ac.cn)

NaPIMM portal
(http://www.usm.my/)

TeraGrid
(http://www.teragrid.org)

National Biomedical Computation Resource
(http://nbcr.net)

Maul High Performance Computing Center
(http://www.mhpcc.edu)

Vision workflow management tools
(http://mgtools.scripps.edu)

For more information, please visit the project website at http://avianflugrid.pragma-grid.net